

 Navigation

 	
 index

 	
 next |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

khmer -- k-mer counting & filtering FTW

	Authors:	Michael R. Crusoe, Greg Edvenson, Jordan Fish, Adina Howe,
Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy, Humberto
Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown

	Contact:	khmer-project@idyll.org

	GitHub:	https://github.com/ged-lab/khmer

	Chat:	https://gitter.im/ged-lab/khmer

	License:	BSD

khmer is a library and suite of command line tools for working with
DNA sequence. It is primarily aimed at short-read sequencing data
such as that produced by the Illumina platform. khmer takes a k-mer-centric
approach to sequence analysis, hence the name.

Installing and running khmer

How to get help

There are two mailing lists dedicated to khmer, an announcements-only list and
a discussion list. To search their archives and sign-up for them, please visit
the following URLs:

	Discussion: http://lists.idyll.org/listinfo/khmer

	Announcements: http://lists.idyll.org/listinfo/khmer-announce

The archives for the khmer list are available at: http://lists.idyll.org/pipermail/khmer/

khmer development has largely been supported by AFRI Competitive Grant
no. 2010-65205-20361 [http://ged.msu.edu/downloads/2009-usda-vertex.pdf] from the USDA
NIFA, and is now funded by the National Human Genome Research
Institute of the National Institutes of Health under Award Number
R01HG007513 [http://ged.msu.edu/downloads/2012-bigdata-nsf.pdf] through
May 2016, both to C. Titus Brown.

Contents:

	Introduction to khmer

	Contributors and Acknowledgements

	Citations

	Release notes

	The khmer user documentation

	The khmer developer documentation

	Roadmap to v2.0, v3.0, v4.0

	License

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

Introduction to khmer

Introduction

khmer is a library and toolkit for doing k-mer-based dataset analysis and
transformations. Our focus in developing it has been on scaling assembly of
metagenomes and mRNA.

khmer can be used for a number of transformations, include inexact
transformations (abundance filtering and error trimming) and exact
transformations (graph-size filtering, to throw away disconnected reads; and
partitioning, to split reads into disjoint sets). Of these, only partitioning
is not constant memory. In all cases, the memory required for assembly with
Velvet or another de Bruijn graph assembler will be more than the memory
required to use our software. Our software will not increase the memory required
for Velvet, either, although we may not be able to decrease the memory
required for assembly for every data set.

Most of khmer relies on an underlying probabilistic data structure known as a
Bloom filter [http://en.wikipedia.org/wiki/Bloom_filter] (also see
Count-Min Sketch [http://dimacs.rutgers.edu/~graham/pubs/papers/cm-full.pdf]
and These Are Not The k-mers You're Looking For [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111482/]), which is essentially
a set of hash tables, each of different size, with no collision detection. These
hash tables are used to store the presence of specific k-mers and/or their
count. The lack of collision detection means that the Bloom filter may report a
k-mer as being "present" when it is not, in fact, in the data set; however, it
will never incorrectly report a k-mer as being absent when it is present.
This one-sided error makes the Bloom filter very useful for certain kinds of
operations.

khmer is also independent of K, and currently works for K <= 32. We will be
integrating code for up to K=64 soon.

khmer is implemented in C++ with a Python wrapper, which is what all of the
scripts use.

Some important documentation for khmer is provided on the Web sites for
khmer-protocols [http://khmer-protocols.readthedocs.org] and khmer-recipes [http://khmer-recipes.readthedocs.org]. khmer-protocols provides detailed
protocols for using khmer to analyze either a transcriptome or a metagenome;
khmer-recipes provides individual recipes for using khmer in a variety of
sequence-oriented tasks such as extracting reads by coverage, estimating a
genome or metagenome size from unassembled reads, and error-trimming reads via
streaming k-mer abundance.

Using khmer

khmer comes "out of the box" with a number of scripts that make it
immediately useful for a few different operations, including:

	normalizing read coverage ("digital normalization")

	dividing reads into disjoint sets that do not connect ("partitioning")

	eliminating reads that will not be used by a de Bruijn graph assembler;

	removing reads with low- or high-abundance k-mers;

	trimming reads of certain kinds of sequencing errors;

	counting k-mers and estimating data set coverage based on k-mer counts;

	running Velvet and calculating assembly statistics;

	optimizing assemblies on various parameters;

	converting FASTA to FASTQ;

and a few other random functions.

Practical considerations

The most important thing to think about when using khmer is whether or not the
transformation or filter you're applying is appropriate for the data you're
trying to assemble. Two of the most powerful operations available in khmer,
graph-size filtering and graph partitioning, only make sense for assembly
datasets with many theoretically unconnected components. This is typical of
metagenomic data sets.

The second most important consideration is memory usage. The effectiveness of
all of the Bloom filter-based functions (which is everything interesting in
khmer!) depends critically on having enough memory to do a good job. See
Choosing table sizes for khmer for more information.

Copyright and license

Portions of khmer are Copyright California Institute of Technology,
where the exact counting code was first developed; the remainder is
Copyright Michigan State University. The code is freely available for
use and re-use under the BSD License.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

Contributors and Acknowledgements

khmer is a product of the GED lab at Michigan State University,

http://ged.msu.edu/

C. Titus Brown <ctb@msu.edu> wrote the initial ktable and hashtable
implementations, as well as hashbits and counting_hash.

Jason Pell implemented many of the C++ k-mer filtering functions.

Qingpeng contributed code to do unique k-mer counting.

Adina Howe, Rosangela Canino-Koning, and Arend Hintze contributed
significantly to discussions of approaches and algorithms; Adina wrote
a number of scripts.

Jared T. Simpson (University of Cambridge, Sanger Institute) contributed
paired-end support for digital normalization.

Eric McDonald thoroughly revised many aspects of the code base, made
much of the codebase thread safe, and otherwise improved performance
dramatically.

Michael R. Crusoe is the new maintainer of khmer.

MRC 2014-05-07

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

Citations

Software Citation

If you use the khmer software, you must cite:

Crusoe et al., The khmer software package: enabling efficient sequence
analysis. 2014. http://dx.doi.org/10.6084/m9.figshare.979190

@article{khmer2014,
 author = "Crusoe, Michael and Edvenson, Greg and Fish, Jordan and Howe,
Adina and McDonald, Eric and Nahum, Joshua and Nanlohy, Kaben and
Ortiz-Zuazaga, Humberto and Pell, Jason and Simpson, Jared and Scott, Camille
and Srinivasan, Ramakrishnan Rajaram and Zhang, Qingpeng and Brown, C. Titus",
 title = "The khmer software package: enabling efficient sequence
analysis",
 year = "2014",
 month = "04",
 publisher = "Figshare",
 url = "http://dx.doi.org/10.6084/m9.figshare.979190"
}

If you use any of our published scientific methods, you should also
cite the relevant paper(s), as directed below. Additionally some scripts use
the SeqAn library [http://www.seqan.de] for read parsing: the full citation
for that library is also included below.

To see a quick summary of papers for a given script just run it without using
any command line arguments.

Graph partitioning and/or compressible graph representation

The load-graph.py, partition-graph.py, find-knots.py, load-graph.py,
and partition-graph.py scripts are part of the compressible graph
representation and partitioning algorithms described in:

Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT.
Scaling metagenome sequence assembly with probabilistic de Bruijn graphs
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13272-7.
http://dx.doi.org/10.1073/pnas.1121464109.
PMID: 22847406

@article{Pell2012,
 author = "Pell, Jason and Hintze, Arend and Canino-Koning, Rosangela and
Howe, Adina and Tiedje, James M. and Brown, C. Titus",
 title = "Scaling metagenome sequence assembly with probabilistic de Bruijn
graphs",
 volume = "109",
 number = "33",
 pages = "13272-13277",
 year = "2012",
 doi = "10.1073/pnas.1121464109",
 abstract ="Deep sequencing has enabled the investigation of a wide range of
environmental microbial ecosystems, but the high memory requirements for de
novo assembly of short-read shotgun sequencing data from these complex
populations are an increasingly large practical barrier. Here we introduce a
memory-efficient graph representation with which we can analyze the k-mer
connectivity of metagenomic samples. The graph representation is based on a
probabilistic data structure, a Bloom filter, that allows us to efficiently
store assembly graphs in as little as 4 bits per k-mer, albeit inexactly. We
show that this data structure accurately represents DNA assembly graphs in low
memory. We apply this data structure to the problem of partitioning assembly
graphs into components as a prelude to assembly, and show that this reduces the
overall memory requirements for de novo assembly of metagenomes. On one soil
metagenome assembly, this approach achieves a nearly 40-fold decrease in the
maximum memory requirements for assembly. This probabilistic graph
representation is a significant theoretical advance in storing assembly graphs
and also yields immediate leverage on metagenomic assembly.",
 URL = "http://www.pnas.org/content/109/33/13272.abstract",
 eprint = "http://www.pnas.org/content/109/33/13272.full.pdf+html",
 journal = "Proceedings of the National Academy of Sciences"
}

Digital normalization

The normalize-by-median.py and count-median.py scripts are part of
the digital normalization algorithm, described in:

A Reference-Free Algorithm for Computational Normalization of
Shotgun Sequencing Data
Brown CT, Howe AC, Zhang Q, Pyrkosz AB, Brom TH
arXiv:1203.4802 [q-bio.GN]
http://arxiv.org/abs/1203.4802

@unpublished{diginorm,
 author = "C. Titus Brown and Adina Howe and Qingpeng Zhang and Alexis B.
Pyrkosz and Timothy H. Brom",
 title = "A Reference-Free Algorithm for Computational Normalization of
Shotgun Sequencing Data",
 year = "2012",
 eprint = "arXiv:1203.4802",
 url = "http://arxiv.org/abs/1203.4802",
}

K-mer counting

The abundance-dist.py, filter-abund.py, and load-into-counting.py scripts
implement the probabilistic k-mer counting described in:

These Are Not the K-mers You Are Looking For: Efficient Online K-mer
Counting Using a Probabilistic Data Structure
Zhang Q, Pell J, Canino-Koning R, Howe AC, Brown CT.
http://dx.doi.org/10.1371/journal.pone.0101271

@article{khmer-counting,
 author = "Zhang, Qingpeng AND Pell, Jason AND Canino-Koning, Rosangela
AND Howe, Adina Chuang AND Brown, C. Titus",
 journal = "PLoS ONE",
 publisher = "Public Library of Science",
 title = "These Are Not the K-mers You Are Looking For: Efficient Online
K-mer Counting Using a Probabilistic Data Structure",
 year = "2014",
 month = "07",
 volume = "9",
 url = "http://dx.doi.org/10.1371%2Fjournal.pone.0101271",
 pages = "e101271",
 abstract = "<p>K-mer abundance analysis is widely used for many purposes in
nucleotide sequence analysis, including data preprocessing for de novo
assembly, repeat detection, and sequencing coverage estimation. We present the
khmer software package for fast and memory efficient <italic>online</italic>
counting of k-mers in sequencing data sets. Unlike previous methods based on
data structures such as hash tables, suffix arrays, and trie structures, khmer
relies entirely on a simple probabilistic data structure, a Count-Min Sketch.
The Count-Min Sketch permits online updating and retrieval of k-mer counts in
memory which is necessary to support online k-mer analysis algorithms. On
sparse data sets this data structure is considerably more memory efficient than
any exact data structure. In exchange, the use of a Count-Min Sketch introduces
a systematic overcount for k-mers; moreover, only the counts, and not the
k-mers, are stored. Here we analyze the speed, the memory usage, and the
miscount rate of khmer for generating k-mer frequency distributions and
retrieving k-mer counts for individual k-mers. We also compare the performance
of khmer to several other k-mer counting packages, including Tallymer,
Jellyfish, BFCounter, DSK, KMC, Turtle and KAnalyze. Finally, we examine the
effectiveness of profiling sequencing error, k-mer abundance trimming, and
digital normalization of reads in the context of high khmer false positive
rates. khmer is implemented in C++ wrapped in a Python interface, offers a
tested and robust API, and is freely available under the BSD license at
github.com/ged-lab/khmer.</p>",
 number = "7",
 doi = "10.1371/journal.pone.0101271"
}

FASTA and FASTQ reading

Several scripts use the SeqAn library for FASTQ and FASTA reading as described
in:

SeqAn An efficient, generic C++ library for sequence analysis
Döring A, Weese D, Rausch T, Reinert K.
http://dx.doi.org/10.1186/1471-2105-9-11

@Article{SeqAn,
 AUTHOR = {Doring, Andreas and Weese, David and Rausch, Tobias and Reinert,
 Knut},
 TITLE = {SeqAn An efficient, generic C++ library for sequence analysis},
 JOURNAL = {BMC Bioinformatics},
 VOLUME = {9},
 YEAR = {2008},
 NUMBER = {1},
 PAGES = {11},
 URL = {http://www.biomedcentral.com/1471-2105/9/11},
 DOI = {10.1186/1471-2105-9-11},
 PubMedID = {18184432},
 ISSN = {1471-2105},
 ABSTRACT = {BACKGROUND: The use of novel algorithmic techniques is pivotal
 to many important problems in life science. For example the sequencing of
 the human genome [1] would not have been possible without advanced assembly
 algorithms. However, owing to the high speed of technological progress and
 the urgent need for bioinformatics tools, there is a widening gap between
 state-of-the-art algorithmic techniques and the actual algorithmic
 components of tools that are in widespread use. RESULTS: To remedy this
 trend we propose the use of SeqAn, a library of efficient data types and
 algorithms for sequence analysis in computational biology. SeqAn comprises
 implementations of existing, practical state-of-the-art algorithmic
 components to provide a sound basis for algorithm testing and development.
 In this paper we describe the design and content of SeqAn and demonstrate
 its use by giving two examples. In the first example we show an application
 of SeqAn as an experimental platform by comparing different exact string
 matching algorithms. The second example is a simple version of the well-
 known MUMmer tool rewritten in SeqAn. Results indicate that our
 implementation is very efficient and versatile to use. CONCLUSION: We
 anticipate that SeqAn greatly simplifies the rapid development of new
 bioinformatics tools by providing a collection of readily usable, well-
 designed algorithmic components which are fundamental for the field of
 sequence analysis. This leverages not only the implementation of new
 algorithms, but also enables a sound analysis and comparison of existing
 algorithms.},
}

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

Release notes

Contents:

	khmer v1.0 release notes

	khmer v1.0.1 release notes

	khmer v1.1 release notes

	khmer v1.2 release notes

	khmer v1.3 release notes

	khmer v1.4 release notes

	khmer v1.4.1 release notes

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	Release notes

khmer v1.0 release notes

582 changed files with 40,527 additions and 31,772 deletions.

The team has been hard at work since v0.8 to refine the codebase into a
stable product.

https://khmer.readthedocs.org/en/latest/

With the 1.0 release we are making a commitment to using Semantic
Versioning[0]: the version number will reflect the impact of the changes
between releases. New major versions will likely require you to change
how you use the project. Minor versions indicate new functionality that
doesn't impact the existing. Patch versions indicate
backwards-compatible fixes. Right now we are limiting this promise to
the command-line interface. A future release will introduce a stable and
mature Python API to the khmer project and at that time we will extend
the version system to include that API.

New items of note:

CITATION: Each script now outputs information on how to cite it. There
is a new paper to describes the project overall: MR Crusoe et al., 2014.
doi: 10.6084/m9.figshare.979190

The documentation for the scripts has undergone an overhaul. The scripts
now output extensive notes and the formal documentation website is
generated from the scripts themselves and will never be out of sync.

https://khmer.readthedocs.org/en/latest/scripts.html

Notable bugs fixed/issues closed:

git clone of the khmer repo reqs > 0.5 GiB #223 @mr-c new khmer/file
module #357 @RamRS Floating point exception in count-overlap.py #282
@qingpeng add documentation for sample-reads-randomly #192 @mr-c only
build zlib and bzip2 when needed #168 @mr-c

Minor updates

khmer tools should output intelligent error messages when fed empty
files #135 @RamRS set IParser::ParserState::ParserState:fill_id to zero
at initialization #356 @mr-c demote nose & sphinx to extra dependencies.
#351 @mr-c CID 1054792 (Medium) Uninitialized scalar field
(UNINIT_CTOR) #179 @mr-c CID 1077117 (Medium): Division or modulo by
zero (DIVIDE_BY_ZERO) #182 @mr-c if --savehash is specified then don't
continue if there is not enough free disk space #245 @RamRS finish
fixing implicit downcasts #330 @mr-c Clean up compile warnings in
subset.cc #172 @mr-c all scripts need to output their version #236 @mr-c
environmental variables need documenting #303 @mr-c C++ code should be
consistently formatted #261 @mr-c Clean up ancillary files #146 @mr-c
squash option not implemented in abundance-dist-single.py #271 @RamRS
Add documentation on how to tie into a particular tagged version #29
@mr-c pip install -e fails with compile error #352 @mr-c remove the
unused KTable object #337 @luizirber zlib 1.2.3 -> zlib 1.2.8 #336 @mr-c
CID 1173035: Uninitialized scalar field (UNINIT_CTOR) #311 @mr-c CID
1153101: Resource leak in object (CTOR_DTOR_LEAK) #309 @mr-c remove
khmer::read_parsers::IParser::ParserState::thread_id #323 @mr-c
several modifications about count-overlap.py script #324 @qingpeng fixed
runscript to handle SystemExit #332 @ctb CID 1063852: Uninitialized
scalar field (UNINIT_CTOR) #313 @mr-c [infrastructure] update to new
Doxyfile format, make version number autoupdate #315 @mr-c Removed an
extraneous using namespace khmer; in kmer.hh, #276 @fishjord Minimum and
recommended python version #94 @mr-c KmerCount class appears to be
unused #302 @mr-c If loadhash is specified in e.g. normalize-by-median,
don't complain about default hashsize parameters #117 @RamRS

Known Issues

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more
memory than it was configured for. This is being investigated in
https://github.com/ged-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one
thread. For example, while using load-into-counting.py. If you
experience this then add "--threads=1" to your command line. This issue
is being tracked in https://github.com/ged-lab/khmer/issues/249

If your k-mer table (hashfile) gets truncated, perhaps from a full
filesystem, then our tools currently will get stuck. This is being
tracked in https://github.com/ged-lab/khmer/issues/247 and
https://github.com/ged-lab/khmer/issues/96 and
https://github.com/ged-lab/khmer/issues/246

Paired-end reads from Casava 1.8 currently require renaming for use in
normalize-by-median and abund-filter when used in paired mode. The
integration of a fix for this is being tracked in
https://github.com/ged-lab/khmer/issues/23

annotate-partitions.py only outputs FASTA even if given a FASTQ file.
This issue is being tracked in
https://github.com/ged-lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and
many threads. This issue is being tracked in
https://github.com/ged-lab/khmer/issues/75

Contributors

@camillescott, @mr-c, @ctb, @luizirber, @RamRS, @qingpeng

[0] http://semver.org/

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	Release notes

khmer v1.0.1 release notes

This is bugfix release. Note: the installation instructions have been
slightly simplified.

https://khmer.readthedocs.org/en/v1.0.1/

New items of note:

This release successfully installs and passes its unit tests on Debian
6.0 "Squeeze", Debian 7.0 "Wheezy", Fedora 19, OS X 7 "Lion", OS X 8
"Mountain Lion", Red Hat Enterprise Linux 6, Scientific Linux 6, Ubuntu
10.04 LTS, and Ubuntu 12.04 LTS. Thanks to the UW-Madison Build and
Test Lab [https://www.batlab.org/] for their testing
infrastructure [http://submit-1.batlab.org/nmi/results/details?runID=247153].

Notable bugs fixed/issues closed:

fixed thread hanging issue #406 @ctb Explicit python2 invocation #404
@mr-c MANIFEST.in,setup.py: fix to correct zlib packaging #365 @mr-c
fixed check_space_for_hashtable to use args.n_tables #382 @ctb Bug
fix: make-initial-stoptags.py error on missing .ht input file, actual
input file is .pt #391 @mr-c

Minor updates

include calc-best-assembly.py in v1.0.1 #409 @ctb updated
normalize-by-median documentation for loadtable #378 @ctb updated
diginorm for new FP rate info; corrected spelling error #398 @ctb Add
spellcheck to code review checklist. #397 @ctb

Known Issues

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more
memory than it was configured for. This is being investigated in
https://github.com/ged-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one
thread. For example, while using load-into-counting.py. If you
experience this then add "--threads=1" to your command line. This issue
is being tracked in https://github.com/ged-lab/khmer/issues/249

If your k-mer table (hashfile) gets truncated, perhaps from a full
filesystem, then our tools currently will get stuck. This is being
tracked in https://github.com/ged-lab/khmer/issues/247 and
https://github.com/ged-lab/khmer/issues/246

Paired-end reads from Casava 1.8 currently require renaming for use in
normalize-by-median and abund-filter when used in paired mode. The
integration of a fix for this is being tracked in
https://github.com/ged-lab/khmer/issues/23

annotate-partitions.py only outputs FASTA even if given a FASTQ file.
This issue is being tracked in
https://github.com/ged-lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and
many threads. This issue is being tracked in
https://github.com/ged-lab/khmer/issues/75

Contributors

@mr-c, @ctb, @luizirber, @RamRS, @ctSkennerton

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	Release notes

khmer v1.1 release notes

This is v1.1, a minor version release; this version adds several new
scripts.

Docs at: https://khmer.readthedocs.org/en/v1.1/

Release notes w/links:
https://github.com/ged-lab/khmer/releases/tag/v1.1

New items of note:

	removed unnecessary files from PyPI package; distribution is now
under 2 MB (#419) @mr-c

	tests are now distributed with package and can be run after 'pip
install' (#451) @mr-c

	complain properly on file read failures (#333) @ctb

	Sequence loading scripts will now report total numbers of k-mers if
given --report_total_kmers (#491/#429) @mr-c

	added metagenome protocol to acceptance testing (#472) @SherineAwad
@ctb

Notable bugs fixed/issues closed:

	removed sandbox/load-into-hashbits.py (superseded by
scripts/load-graph.py --no-tagset) (#480, @wrightmhw)

	promoted extract-long-sequences.py to scripts (#461, @wrightmhw)

	promoted fastq-to-fasta.py to scripts (#436, @wrightmhw)

	remove incorrect filesystem space check from abundance-dist.py (#452,
@chuckpr)

	when counting hash writes fail, produce error message (#411, @znruss)

	removed a number of memory leaks found by Coverity and valgrind
(#451, @mr-c)

	updated reservoir sampling to produce multiple subsamples with -S
(#197, @ctb)

	fixed pip2, python2 issues (#428 and #485, @accaldwell @mr-c)

	removed untested/unused code and scripts (#438, @mr-c)

Known issues:

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more
memory than it was configured for. This is being investigated in
https://github.com/ged-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one
thread. For example, while using load-into-counting.py. If you
experience this then add "--threads=1" to your command line. This issue
is being tracked in https://github.com/ged-lab/khmer/issues/249

If your k-mer table is truncated on write, an error may not be reported;
this is being tracked in https://github.com/ged-lab/khmer/issues/443.
However, khmer will now (correctly) fail when trying to read a truncated
file (See #333).

Paired-end reads from Casava 1.8 currently require renaming for use in
normalize-by-median and abund-filter when used in paired mode. The
integration of a fix for this is being tracked in
https://github.com/ged-lab/khmer/issues/23

Some scripts only output FASTA even if given a FASTQ file. This issue is
being tracked in https://github.com/ged-lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and
many threads. This issue is being tracked in
https://github.com/ged-lab/khmer/issues/75

Contributors

@mr-c, @ctb, @camillescott, @wrightmhw, @chuckpr, @luizirber,
@accaldwell, @znruss

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	Release notes

khmer v1.2 release notes

This is the v1.2 release of khmer: minor new features and bug fixes. The
start of this release cycle coincided with the Mozilla Science Lab
Global Sprint 2014. We honor and thank the 19 new contributors
(including four Michigan State University undergraduates) who
volunteered their time to contribute!

Docs at: https://khmer.readthedocs.org/en/v1.2/

New items of note:

@mr-c and @ctb are proud to announce khmer's code of conduct
http://khmer.readthedocs.org/en/v1.2/dev/CODE_OF_CONDUCT.html #664 All
scripts list which files have been created during their execution #477
@bocajnotnef All scripts now only output status messages to STDERR
instead of STDOUT #626 @b-wyss docs/ a fairly major re-organization and
brand new developer docs @ctb @mr-c load-into-counting.py:
--summary-info: machine readable summary in JSON or TSV format #649
@kdmurray91 scripts/extract-partitions.py: added documentation for .dist
columns #516 @chuckpr Makefile: a new target
make install-dependencies is useful for developers #539 @mr-c
Sandbox scripts have been cleaned up, or removed (see the
sandbox/README.rst for details) #589 @ctb

Notable bugs fixed/issues closed:

do-partition.py's excessive spawning of threads fixed. #637
@camillescott Fixed unique k-mer count reporting in load-graph,
load-into-counting, and normalize-by-median. #562 @mr-c Clarified and
test the requirement for a 64-bit operating system #529 @Echelon9
Removed some of the broken multi-threading options #511 @majoras-masque
Fix table.get("wrong_length_string") gives core dump #585 @Echelon9
filter-abund lists parameters that it doesn't use #524 @jstapleton
Reduction of memory required to run the test suite #542 @leogargu BibTeX
included in CITATIONS #541 @HLWiencko

Additional fixes/features

delete ScoringMatrix::assign as it is unused #502 @RodPic Root all of
our C++ exceptions to a common base exception #508 @iglpdc deleted
KhmerError #503 @drlabratory normalize-by-median reporting output after
main loop exits, in case it hadn't been triggered #586 @ctb Many issues
discovered by cppcheck cleaned up #506 @brtaylor92 Developers have a new
Makefile target to autofix formatting: make format #612 @brtaylor92
normalize-by-median.py test coverage increased #361 @SherineAwad Several
unused functions were removed #599 @brtaylor92 Developer docs now link
to the stdc++ docs as appropriate #629 @mr-c Added tests for
non-sequential access to input files #644 @bocajnotnef Removed
khmer/theading_args.py #653 @bocajnotnef Improved test for maximum k
value #658 @pgarland ReadParser no longer crashes if n_threads = 0 #86
@jiarong

Known issues:

All of these are pre-existing.

Multithreaded reading will drop reads. This major issue has been present
for several khmer releases and was only found via a much larger test
case that we had been previously using. Credit to @camillescott.
Workaround: disable threading. The next release will fix this and the
other FAST[AQ] parsing issues.
https://github.com/ged-lab/khmer/issues/681

Some users have reported that normalize-by-median.py will utilize more
memory than it was configured for. This is being investigated in
https://github.com/ged-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one
thread. For example, while using load-into-counting.py. If you
experience this then add "--threads=1" to your command line. This issue
is being tracked in https://github.com/ged-lab/khmer/issues/249

If your k-mer table is truncated on write, an error may not be reported;
this is being tracked in https://github.com/ged-lab/khmer/issues/443.
However, khmer will now (correctly) fail when trying to read a truncated
file (See #333).

Paired-end reads from Casava 1.8 currently require renaming for use in
normalize-by-median and abund-filter when used in paired mode. The
integration of a fix for this is being tracked in
https://github.com/ged-lab/khmer/issues/23

Some scripts only output FASTA even if given a FASTQ file. This issue is
being tracked in https://github.com/ged-lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and
many threads. This issue is being tracked in
https://github.com/ged-lab/khmer/issues/75

Contributors

@mr-c, @ctb, *@bocajnotnef, *@Echelon9, *@jlippi, *@kdmurray91,
@qingpeng, *@leogargu, *@jiarong, *@brtaylor92, *@iglpdc,
@camillescott, *@HLWiencko, *@cowguru2000, *@drlabratory,
*@jstapleton, *@b-wyss, *@jgluck, @fishjord, *@SherineAwad,
*@pgarland, *@majoras-masque, @chuckpr, *@RodPic, @luizirber,
*@jrherr

* Denotes new contributor

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	Release notes

khmer v1.3 release notes

This is the v1.3 release of khmer featuring a new FAST[AQ] parser from
the SeqAn project.

Docs at: https://khmer.readthedocs.org/en/v1.3/

New items of note:

Fixes the two multithreaded reading of sequence files issues: FASTQ
parsing and the recently found read dropping issue. Several khmer
scripts now support reading from non-seekable plain and gziped FAST[AQ]
files (a.k.a pipe or streaming support). @mr-c #642

Notable bugs fixed/issues closed:

restore threading to load-graph.py #699 @mr-c

Additional fixes/features

increase filter_abund.py coverage #568 @wrightmhw Provide scripts/
testing coverage for check_space_for_hashtable #386 #678 #718 @b-wyss
Use absolute URI in CODE_OF_CONDUCT #684 @jsspencer give SeqAn credit
#712 @mr-c Added testing to make sure all sandbox scripts are
import-able and execfile-able. #709 @ctb reduce memory requirements to
run tests #701 @ctb Two minor bug fixes to sandbox scripts #706 @ctb
Upgrade of trim-low-abund for better, more profitable streaming. #601
@ctb Add --force or --expert or --ignore flag to all khmer scripts that
do sanity checking #399 #647 @jessicamizzi Add XDECREF for returned read
tuple in ReadParser.read_pair_iterator() #693 @mr-c @camillescott

Known issues:

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more
memory than it was configured for. This is being investigated in #266

If your k-mer table is truncated on write, an error may not be reported;
this is being tracked in https://github.com/ged-lab/khmer/issues/443.
However, khmer will now (correctly) fail when trying to read a truncated
file (See #333).

Paired-end reads from Casava 1.8 currently require renaming for use in
normalize-by-median and abund-filter when used in paired mode. The
integration of a fix for this is being tracked in #23

Some scripts only output FASTA even if given a FASTQ file. This issue is
being tracked in #46

A user reported that abundance-dist-single.py fails with small files and
many threads. This issue is being tracked in #75

Contributors

@mr-c, @ctb, @camillescott, @b-wyss, @wrightmhw, @jsspencer

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	Release notes

khmer v1.4 release notes

This is the v1.4 release of khmer featuring the results of our March and
April (PyCon) coding sprints and the 16 new contributors; the use of the
new v0.8 release of screed (the library we use for pure Python reading
of nucleotide sequence files); and the addition of @luizirber's
HyperLogLog counter for quick cardinality estimation.

Documentation is at https://khmer.readthedocs.org/en/v1.4/

New items of note:

Casava 1.8 read naming is now fully supported and in general the scripts
no longer mangle read names. Side benefits: split-paired-reads.py
will no longer drop reads with 'bad' names; count-median.py can
generate output in CSV format. #759 #818 @ctb #873 @ahaerpfer

Most scripts now support a "broken" interleaved paired-read format for
FASTA/ FASTQ nucleotide sequence files.
`trim-low-abund.py <http://khmer.readthedocs.org/en/v1.4/user/scripts.html#trim-low-abund-py>`__
has been promoted from the sandbox as well (with streaming support).
#759 @ctb #963 @sguermond #933 @standage

The script to transform an interleaved paired-read nucleotide sequence
file into two files now allows one to name the output files which can be
useful in combination with named pipes for streaming processing #762
@ctb

Streaming everywhere: thanks to screed v0.8 we now support streaming of
almost all inputs and outputs. #830 @aditi9783 #812 @mr-c #917
@bocajnotnef #882 @standage

Need a quick way to count total number of unique k-mers in very low
memory? the unique-kmers.py script in the sandbox uses a HyperLogLog
counter to quickly (and with little memory) provide an estimate with a
controllable error rate. #257 #738 #895 #902 @luizirber

normalize-by-median.py can now process both a paired interleaved
sequence file and a file of unpaired reads in the same invocation thus
removing the need to write the counting table to disk as required in the
workaround. #957 @susinmotion

Notable bugs fixed/issues closed:

Paired-end reads from Casava 1.8 no longer require renaming for use in
normalize-by-median.py and abund-filter.py when used in paired
mode #818 @ctb

Python version support clarified. We do not (yet) support Python 3.x
#741 @mr-c

If a single output file mode is chosen for normalize-by-median.py we now
default to overwriting the output. Appending the output is available by
using the append redirection operator from the shell. #843
@drtamermansour

Scripts that consume sequence data using C++ will now properly throw an
error on truncated files. #897 @kdmurray91 And while writing to disk we
properly check for errors #856 #962 @mr-c

abundance-dist-single.py no longer fails with small files and many
threads. #900 @mr-c

Additional fixes/features

Of interest to users:

Many documentation updates #753 @PamelaM, #782 @bocajnotnef, #845
@alameldin, #804 @ctb, #870 @SchwarzEM, #953 #942 @safay,
#929,@davelin1, #687 #912 #926 @mr-c

Installation instructions for Conda, Arch Linux, and Mac Ports have been
added #723 @reedacartwright #952 @elmbeech #930 @ahaerpfer

The example script for the STAMPS database has been fixed to run
correctly #781 @drtamermansour

split-paired-reads.py: added -o option to allow specification of
an output directory #752 @bede

Fixed a string formatting and a boundry error in
sample-reads-randomly.py #773 @qingpeng #995 @ctb

CSV output added to abundance-dist.py, abundance-dist-single.py,
and count-overlap.py, and readstats.py #831 #854 #855
@drtamermansour #959 @anotherthomas

TSV/JSON output of load-into-counting.py enhanced with the total
number of reads processed #996 @kdmurray91 Output files are now also
checked to be writable before loading the input files #672 @pgarland
@bocajnotnef

interleave-reads.py now prints the output filename nicely #827
@kdmurray91

Cleaned up error for input file not existing #772 @jessicamizzi #851
@ctb

Fixed error in find-knots.py #860 @TheOneHyer

The help text for load-into-counting.py for the
--no-bigcounts/-b flag has been clarified #857 @kdmurray91

@lexnederbragt confirmed an old bug has been fixed with his test for
whitespace in sequence identifiers interacting with the
extract-partitions.py script #979

Now safe to copy-and-paste from the user documentation as the smart
quotes have been turned off. #967 @ahaerpfer

The script make-coverage.py has been restored to the sandbox. #920
@SherineAwad

normalize-by-median.py will warn if two of the input files have the
same name #932 @elmbeech

Of interest to developers:

Switched away from using --user install for developers #740 @mr-c
@drtamermansour & #883 @standage

Developers can now see a summary of important Makefile targets via
make help #783 @standage

The unused khmer.load_pe module has been removed #828 @kdmurray91

Versioneer bug due to new screed release was squashed #835 @mr-c

A Python 2.6 and 2.7.2 specific bug was worked around #869 @kdmurray91
@ctb

Added functions hash_find_all_tags_list and
hash_get_tags_and_positions to CountingHash objects #749 #765 @ctb

The make diff-cover and ChangeLog formatting requirements have been
added to checklist #766 @mr-c

A useful message is now presented if large tables fail to allocate
enough memory #704 @mr-c

A checklist for developers adding new CPython types was added #727 @mr-c

The sandbox graduation checklist has been updated to include streaming
support #951 @sguermond

Specific policies for sandbox/ and scripts/ content, and a process for
adding new command line scripts into scripts/ have been added to the
developer documentation #799 @ctb

Sandbox scripts update: corrected #! Python invocation #815 @Echelon9,
executable bits, copyright headers, no underscores in filenames #823
#826 #850 @alameldin several scripts deleted, docs + requirements
updated #852 @ctb

Avoid running big-memory tests on OS X #819 @ctb

Unused callback code was removed #698 @mr-c

The CPython code was updated to use the new checklist and follow
additional best practices #785 #842 @luizirber

Added a read-only view of the raw counting tables #671 @camillescott
#869 @kdmurray91

Added a Python method for quickly getting the number of underlying
tables in a counting or presence table #879 #880 @kdmurray91

The C++ library can now be built separately for the brave and curious
developer #788 @kdmurray91

The ReadParser object now keeps track of the number of reads processed
#877 @kdmurray91

Documentation is now reproducible #886 @mr-c

Python future proofing: specify floor division #863 @mr-c

Miscellaneous spelling fixes; thanks codespell! #867 @mr-c

Debian package list update #984 @mr-c

khmer.kfile.check_file_status() has been renamed to
check_input_files() #941 @proteasome filter-abund.py now uses it
to check the input counting table #931 @safay

normalize-by-median.py was refactored to not pass the ArgParse
object around #965 @susinmotion

Developer communication has been clarified #969 @sguermond

Tests using the 'fail_okay=true' parameter to runscript have been
updated to confirm the correct error occurred. 3 faulty tests were fixed
and the docs were clarified #968 #971 @susinmotion

FASTA test added for extract-long-sequences.py #901 @jessicamizzi

'added silly test for empty file warning' #557 @wltrimbl @bocajnotnef

A couple tests were made more resilient and some extra error checking
added in CPython land #889 @mr-c

Copyright added to pull request checklist #940 @sguermond

khmer_exceptions are now based on std::strings which plugs a
memory leak #938 @anotherthomas

Python docstrings were made PEP257 compliant #936 @ahaerpfer

Some C++ comments were converted to be Doxygen compliant #950
@josiahseaman

The counting and presence table warning logic was refactored and
centralized #944 @susinmotion

The release checklist was updated to better run the post-install tests
#911 @mr-c

The unused method find_all_tags_truncate_on_abundance was removed
from the CPython API #924 @anotherthomas

OS X warnings quieted #887 @mr-c

Known issues:

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more
memory than it was configured for. This is being investigated in
https://github.com/ged-lab/khmer/issues/266

Some scripts only output FASTA even if given a FASTQ file. This issue is
being tracked in https://github.com/ged-lab/khmer/issues/46

Contributors

@ctb, @kdmurray91, @mr-c, @drtamermansour, @luizirber, @standage,
@bocajnotnef, *@susinmotion, @jessicamizzi, *@elmbeech,
*@anotherthomas, *@sguermond, *@ahaerpfer, *@alameldin,
*@TheOneHyer, *@aditi9783, *@proteasome, *@bede, *@davelin1,
@Echelon9, *@reedacartwright, @qingpeng, *@SchwarzEM, *@scottsievert,
@PamelaM, @SherineAwad, *@josiahseaman, *@lexnederbragt,

* Indicates new contributors

Issue reporters

@moorepants, @teshomem, @macmanes, @lexnederbragt, @r-gaia-cs,
@magentashades

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	Release notes

khmer v1.4.1 release notes

This is the v1.4.1 release of khmer. Due to the upcoming Python 3
compatibility in both khmer and Screed we need to modify the dependency
between khmer and the Screed library to be only the existing version
0.8, and not some future version.

If you have khmer 1.4 installed then there is no benefit to upgrading;
this point release is to keep pip install khmer still working when
we release the next version of Screed with Python 3 support. The next
version of khmer, v2.0, will also have Python 3 support.

Documentation is at https://khmer.readthedocs.org/en/v1.4.1/ (no changes
from v1.4)

Known issues:

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more
memory than it was configured for. This is being investigated in
https://github.com/ged-lab/khmer/issues/266

Some scripts only output FASTA even if given a FASTQ file. This issue is
being tracked in https://github.com/ged-lab/khmer/issues/46

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

The khmer user documentation

Contents:

	Installing and running khmer

	A few examples

	An assembly handbook for khmer - rough draft

	khmer's command-line interface

	Blog posts and additional documentation

	Choosing table sizes for khmer

	Partitioning large data sets (50m+ reads)

	Known Issues

	Deploying the khmer project tools on Galaxy

	An incomplete bibliography of papers using khmer

	How to get help

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

Installing and running khmer

You'll need a 64-bit operating system, Python 2.7.x and internet access.

The khmer project currently works with Python 2.6 but we target Python 2.7.x.

Build requirements

OS X

	From a terminal download the virtualenv package and create a
virtual environment with it:

curl -O https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.11.6.tar.gz
tar xzf virtualenv*
cd virtualenv-*; python2.7 virtualenv.py ../khmerEnv; cd ..
source khmerEnv/bin/activate

Linux

	Install the python development environment, virtualenv, pip, gcc, and g++.

	On recent Debian and Ubuntu this can be done with:

sudo apt-get install python2.7-dev python-virtualenv python-pip gcc \
 g++

	For RHEL6:

sudo yum install -y python-devel python-pip git gcc gcc-c++ make
sudo pip install virtualenv

	Create a virtualenv and activate it:

cd a/writable/directory/
python2.7 -m virtualenv khmerEnv
source khmerEnv/bin/activate

Linux users without root access can try the OS X instructions above.

Installing khmer inside the virtualenv

	Use pip to download, build, and install khmer and its dependencies:

pip2 install khmer

	The scripts are now in the env/bin directory and ready for your
use. You can directly use them by name, see khmer's command-line interface.

	When returning to khmer after installing it you will need to
reactivate the virtualenv first:

source khmerEnv/bin/activate

Run the tests

After installing you can run the embedded test suite:

nosetests khmer --attr '!known_failing'

If the nosetests binary isn't installed then:

pip2 install khmer[tests]
nosetests khmer --attr '!known_failing'

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

A few examples

See the 'examples' subdirectory for complete examples.

STAMPS data set

The 'stamps' data set is a fake metagenome-like data set containing
two species, mixed at a 10:1 ratio. The source genomes are
in 'data/stamps-genomes.fa'. The reads file is in 'data/stamps-reads.fa.gz',
and consists of 100-base reads with a 1% error rate.

The example shows how to construct k-mer abundance histograms, as well
as the effect of digital normalization and partitioning on the k-mer
abundance distribution.

See the script for running everything [https://github.com/ged-lab/khmer/blob/master/examples/stamps/do.sh]
and the IPython Notebook [http://nbviewer.ipython.org/urls/raw.github.com/ged-lab/khmer/master/examples/stamps%2520k-mer%2520distributions.ipynb].

For an overall discussion and some slides to explain what's going on,
visit the Web site for a 2013 HMP metagenome assembly webinar that
Titus Brown gave [http://ged.msu.edu/angus/2013-hmp-assembly-webinar/exploring-stamps-data.html].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

An assembly handbook for khmer - rough draft

	date:	2012-11-2

An increasing number of people are asking about using our assembly
approaches for things that we haven't yet written (or posted) papers
about. Moreover, our assembly strategies themselves are also under
constant evolution as we do more research and find ever-wider
applicability of our approaches.

Note, this is an exact copy of Titus' blog post, here [http://ivory.idyll.org/blog/an-assembly-handbook-for-khmer.html]
-- go check the bottom of that for comments.

Authors

This handbook distills the cumulative expertise of Adina Howe, Titus
Brown, Erich Schwarz, Jason Pell, Camille Scott, Elijah Lowe, Kanchan
Pavangadkar, Likit Preeyanon, and others.

Introduction

khmer is a general framework for low-memory k-mer counting, filtering,
and advanced trickery [http://khmer.readthedocs.org/en/latest/].

The latest source is always available here [https://github.com/ged-lab/khmer].

khmer is really focused on short read data, and, more specifically,
Illumina, because that's where we have a too-much-data problem.
However, a lot of the prescriptions below can be adapted to longer
read technologies such as 454 and Ion Torrent without much effort.

Don't try to use our k-mer approaches with PacBio -- the error rate is
too high.

There are currently two papers available on khmer: the partitioning
paper [http://pnas.org/content/early/2012/07/25/1121464109.abstract] and
the digital normalization paper [http://arxiv.org/abs/1203.4802].

There are many blog posts about this stuff on Titus Brown's blog [http://ivory.idyll.org/blog/]. We will try to link them in where
appropriate.

Asking for help

There's some documentation here:

https://khmer.readthedocs.org/en/latest/

There's also a khmer mailing list at lists.idyll.org that you can use to
get help with khmer. To sign up, just go to
the khmer lists page [http://lists.idyll.org/listinfo/khmer] and
subscribe.

Preparing your sequences

Do all the quality filtering, trimming, etc. that you think you should do.

Most of the khmer tools currently work "out of the box" on interleaved
paired-end data. Ask on the list if you're not sure.

All of our scripts will take in .fq or .fastq files as FASTQ, and all
other files as FASTA. gzip files are always accepted. Let us know if
not; that's a bug!

Most scripts output FASTA, and some mangle headers. Sorry. We're
working on outputting FASTQ for FASTQ input, and removing any header
mangling.

Picking k-mer table sizes and k parameters

For k-mer table sizes, read Choosing table sizes for khmer

For k-mer sizes, we recommend k=20 for digital normalization and k=32
for partitioning; then assemble with a variety of k parameters.

Genome assembly, including MDA samples and highly polymorphic genomes

	Apply digital normalization as follows.

Broadly, normalize each insert library separately, in the following way:

For high-coverage libraries (> ~50x), do three-pass digital
normalization: run normalize-by-median to C=20 and then run
filter-abund with C=1. Now split out the remaining
paired-end/interleaved and single-end reads using
strip-and-split-for-assembly, and normalize-by-median the paired-end and
single-end files to C=5 (in that order).

For low-coverage libraries (< 50x) do single-pass digital normalization:
run normalize-by-median to C=10.

2. Extract any remaining paired-end reads and lump remaining orphan
reads into singletons using strip-and-split-for-assembly

3. Then assemble as normal, with appropriate insert size specs
etc. for the paired end reads.

You can read about this process in the digital normalization paper [http://arxiv.org/abs/1203.4802].

mRNAseq assembly

	Apply single-pass digital normalization.

Run normalize-by-median to C=20.

2. Extract any remaining paired-end reads and lump remaining orphan
reads into singletons using strip-and-split-for-assembly

3. Then assemble as normal, with appropriate insert size specs
etc. for the paired end reads.

You can read about this process in the digital normalization paper [http://arxiv.org/abs/1203.4802].

Metagenome assembly

	Apply single-pass digital normalization.

Run normalize-by-median to C=20 (we've also found C=10 works fine).

2. Run filter-below-abund with C=50 (if you diginormed to C=10) or
C=100 (if you diginormed to C=20);

	Partition reads with load-graph, etc. etc.

4. Assemble groups as normal, extracting paired-end reads and lumping
remaining orphan reads into singletons using
strip-and-split-for-assembly.

(We actually use Velvet at this point, but there should be no harm in
using a metagenome assembler such as MetaVelvet or MetaIDBA or
SOAPdenovo.)

Read more about this in the partitioning [http://pnas.org/content/early/2012/07/25/1121464109.abstract]
paper. We have some upcoming papers on partitioning and metagenome
assembly, too; we'll link those in when we can.

Metatranscriptome assembly

(Not tested by us!)

	Apply single-pass digital normalization.

Run normalize-by-median to C=20.

2. Extract any remaining paired-end reads and lump remaining orphan
reads into singletons using strip-and-split-for-assembly

3. Then assemble with a genome or metagenome assembler, not an
mRNAseq assembler. Use appropriate insert size specs etc. for the
paired end reads.

Preprocessing Illumina for other applications

(Not tested by us!)

Others have told us that you can apply digital normalization to
Illumina data prior to using Illumina for RNA scaffolding [http://www.ncbi.nlm.nih.gov/pubmed?term=20980554] or error
correcting PacBio reads [http://www.ncbi.nlm.nih.gov/pubmed?term=22750884].

Our suggestion for this, based on no evidence whatsoever, is to
diginorm the Illumina data to C=20.

Quantifying mRNAseq or metagenomes assembled with digital normalization

For now, khmer only deals with assembly! So: assemble. Then, go back
to your original, unnormalized reads, and map those to your assembly
with e.g. bowtie. Then count as you normally would :).

Philosophy of digital normalization

The basic philosophy of digital normalization is "load your most
valuable reads first." Diginorm gets rid of redundancy iteratively,
so you are more likely to retain the first reads fed in; this means
you should load in paired end reads, or longer reads, first.

Iterative and independent normalization

You can use --loadtable and --savetable to do iterative
normalizations on multiple files in multiple steps. For example, break

normalize-by-median.py [...] file1.fa file2.fa file3.fa

into multiple steps like so:

normalize-by-median.py [...] --savetable file1.ct file1.fa
normalize-by-median.py [...] --loadtable file1.ct --savetable file2.ct file2.fa
normalize-by-median.py [...] --loadtable file2.ct --savetable file3.ct file3.fa

The results should be identical!

If you want to independently normalize multiple files for speed reasons, go
ahead. Just remember to do a combined normalization at the end. For example,
instead of

normalize-by-median.py [...] file1.fa file2.fa file3.fa

you could do

normalize-by-median.py [...] file1.fa
normalize-by-median.py [...] file2.fa
normalize-by-median.py [...] file3.fa

and then do a final

normalize-by-median.py [...] file1.fa.keep file2.fa.keep file3.fa.keep

The results will not be identical, but should not differ
significantly. The multipass approach will take more total time but
may end up being faster walltime because you can execute the
independent normalizations on multiple computers.

For a cleverer approach that we will someday implement, read the
Beachcomber's Dilemma [http://ivory.idyll.org/blog/beachcombers-dilemma.html].

Validating and comparing assemblies

More here soon :).

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

khmer's command-line interface

The simplest way to use khmer's functionality is through the command
line scripts, located in the scripts/ directory of the khmer
distribution. Below is our documentation for these scripts. Note
that all scripts can be given -h which will print out
a list of arguments taken by that script.

Many scripts take -x and -N parameters, which drive khmer's
memory usage. These parameters depend on details of your data set; for more information
on how to choose them, see Choosing table sizes for khmer.

You can also override the default values of --ksize/-k,
--n_tables/-N, and --min-tablesize/-x with
the environment variables KHMER_KSIZE, KHMER_N_TABLES, and
KHMER_MIN_TABLESIZE respectively.

	k-mer counting and abundance filtering

	Partitioning

	Digital normalization

	Read handling: interleaving, splitting, etc.

Note

Almost all scripts take in either FASTA and FASTQ format, and
output the same. Some scripts may only recognize FASTQ if the file
ending is '.fq' or '.fastq', at least for now.

Files ending with '.gz' will be treated as gzipped files, and
files ending with '.bz2' will be treated as bzip2'd files.

k-mer counting and abundance filtering

load-into-counting.py

Build a k-mer counting table from the given sequences.

usage: load-into-counting.py [-h] [--version] [-q] [--ksize KSIZE]
 [--n_tables N_TABLES]
 [--min-tablesize MIN_TABLESIZE]
 [--threads THREADS] [-b] [--summary-info FORMAT]
 [--report-total-kmers] [-f]
 output_countingtable_filename
 input_sequence_filename
 [input_sequence_filename ...]

	
output_countingtable_filename

	The name of the file to write the k-mer counting table to.

	
input_sequence_filename

	The names of one or more FAST[AQ] input sequence files.

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
-b, --no-bigcount

	The default behaviour is to count past 255 using bigcount. This flag turns bigcount off, limiting counts to 255.

	
--summary-info <format>, -s <format>

	What format should the machine readable run summary be in? (json or tsv, disabled by default)

	
--report-total-kmers, -t

	Prints the total number of k-mers to stderr

	
-f, --force

	Overwrite output file if it exists

Note: with -b the output will be the exact size of the
k-mer counting table and this script will use a constant amount of memory.
In exchange k-mer counts will stop at 255. The memory usage of this script
with -b will be about 1.15x the product of the -x and
-N numbers.

Example:

load-into-counting.py -k 20 -x 5e7 out.ct data/100k-filtered.fa

Multiple threads can be used to accelerate the process, if you have extra
cores to spare.

Example:

load-into-counting.py -k 20 -x 5e7 -T 4 out.ct data/100k-filtered.fa

abundance-dist.py

Calculate abundance distribution of the k-mers in the sequence file using a pre-made k-mer counting table.

usage: abundance-dist.py [-h] [-z] [-s] [--csv] [--version] [-f]
 input_counting_table_filename input_sequence_filename
 output_histogram_filename

	
input_counting_table_filename

	The name of the input k-mer counting table file.

	
input_sequence_filename

	The name of the input FAST[AQ] sequence file.

	
output_histogram_filename

	The columns are: (1) k-mer abundance, (2) k-mer count, (3) cumulative count, (4) fraction of total distinct k-mers.

	
-h, --help

	show this help message and exit

	
-z, --no-zero

	Do not output 0-count bins

	
-s, --squash

	Overwrite existing output_histogram_filename

	
--csv

	Use the CSV format for the histogram. Includes column headers.

	
--version

	show program's version number and exit

	
-f, --force

	Continue even if specified input files do not exist or are empty.

abundance-dist-single.py

Calculate the abundance distribution of k-mers from a single sequence file.

usage: abundance-dist-single.py [-h] [--version] [-q] [--ksize KSIZE]
 [--n_tables N_TABLES]
 [--min-tablesize MIN_TABLESIZE]
 [--threads THREADS] [-z] [-b] [-s] [--csv]
 [--savetable filename] [--report-total-kmers]
 [-f]
 input_sequence_filename
 output_histogram_filename

	
input_sequence_filename

	The name of the input FAST[AQ] sequence file.

	
output_histogram_filename

	The name of the output histogram file. The columns are: (1) k-mer abundance, (2) k-mer count, (3) cumulative count, (4) fraction of total distinct k-mers.

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
-z, --no-zero

	Do not output 0-count bins

	
-b, --no-bigcount

	Do not count k-mers past 255

	
-s, --squash

	Overwrite output file if it exists

	
--csv

	Use the CSV format for the histogram. Includes column headers.

	
--savetable <filename>

	Save the k-mer counting table to the specified filename.

	
--report-total-kmers, -t

	Prints the total number of k-mers to stderr

	
-f, --force

	Overwrite output file if it exists

Note that with -b this script is constant memory; in exchange,
k-mer counts will stop at 255. The memory usage of this script with
-b will be about 1.15x the product of the -x and
-N numbers.

To count k-mers in multiple files use load_into_counting.py and
abundance_dist.py.

filter-abund.py

Trim sequences at a minimum k-mer abundance.

usage: filter-abund.py [-h] [--threads THREADS] [--cutoff CUTOFF]
 [--variable-coverage] [--normalize-to NORMALIZE_TO]
 [-o optional_output_filename] [--version] [-f]
 input_counting_table_filename input_sequence_filename
 [input_sequence_filename ...]

	
input_counting_table_filename

	The input k-mer counting table filename

	
input_sequence_filename

	Input FAST[AQ] sequence filename

	
-h, --help

	show this help message and exit

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
--cutoff <int>, -C <int>

	Trim at k-mers below this abundance.

	
--variable-coverage, -V

	Only trim low-abundance k-mers from sequences that have high coverage.

	
--normalize-to <int>, -Z <int>

	Base the variable-coverage cutoff on this median k-mer abundance.

	
-o <optional_output_filename>, --out <optional_output_filename>

	Output the trimmed sequences into a single file with the given filename instead of creating a new file for each input file.

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

Trimmed sequences will be placed in ${input_sequence_filename}.abundfilt
for each input sequence file. If the input sequences are from RNAseq or
metagenome sequencing then --variable-coverage should be used.

Example:

load-into-counting.py -k 20 -x 5e7 table.ct data/100k-filtered.fa
filter-abund.py -C 2 table.ct data/100k-filtered.fa

filter-abund-single.py

Trims sequences at a minimum k-mer abundance (in memory version).

usage: filter-abund-single.py [-h] [--version] [-q] [--ksize KSIZE]
 [--n_tables N_TABLES]
 [--min-tablesize MIN_TABLESIZE]
 [--threads THREADS] [--cutoff CUTOFF]
 [--savetable filename] [--report-total-kmers]
 [-f]
 input_sequence_filename

	
input_sequence_filename

	FAST[AQ] sequence file to trim

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
--cutoff <int>, -C <int>

	Trim at k-mers below this abundance.

	
--savetable <filename>

	If present, the name of the file to save the k-mer counting table to

	
--report-total-kmers, -t

	Prints the total number of k-mers to stderr

	
-f, --force

	Overwrite output file if it exists

Trimmed sequences will be placed in ${input_sequence_filename}.abundfilt.

This script is constant memory.

To trim reads based on k-mer abundance across multiple files, use
load-into-counting.py and filter-abund.py.

Example:

filter-abund-single.py -k 20 -x 5e7 -C 2 data/100k-filtered.fa

trim-low-abund.py

Trim low-abundance k-mers using a streaming algorithm.

usage: trim-low-abund.py [-h] [--version] [-q] [--ksize KSIZE]
 [--n_tables N_TABLES] [--min-tablesize MIN_TABLESIZE]
 [--cutoff CUTOFF] [--normalize-to NORMALIZE_TO]
 [-o filename] [--variable-coverage] [-l filename]
 [-s filename] [--force] [--ignore-pairs]
 [--tempdir TEMPDIR]
 input_filenames [input_filenames ...]

	
input_filenames

	

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--cutoff <int>, -C <int>

	remove k-mers below this abundance

	
--normalize-to <int>, -Z <int>

	base cutoff on this median k-mer abundance

	
-o <filename>, --out <filename>

	only output a single file with the specified filename; use a single dash "-" to specify that output should go to STDOUT (the terminal)

	
--variable-coverage, -V

	Only trim low-abundance k-mers from sequences that have high coverage.

	
-l <filename>, --loadtable <filename>

	load a precomputed k-mer table from disk

	
-s <filename>, --savetable <filename>

	save the k-mer counting table to disk after allreads are loaded.

	
--force

	

	
--ignore-pairs

	

	
--tempdir <str>, -T <str>

	

The output is one file for each input file, <input file>.abundtrim, placed
in the current directory. This output contains the input sequences
trimmed at low-abundance k-mers.

The -V/--variable-coverage parameter will, if specified,
prevent elimination of low-abundance reads by only trimming
low-abundance k-mers from high-abundance reads; use this for
non-genomic data sets that may have variable coverage.

Note that the output reads will not necessarily be in the same order
as the reads in the input files; if this is an important consideration,
use load-into-counting.py and filter-abund.py. However, read
pairs will be kept together, in "broken-paired" format; you can use
extract-paired-reads.py to extract read pairs and orphans.

Example:

trim-low-abund.py -x 5e7 -k 20 -C 2 data/100k-filtered.fa

count-median.py

Count k-mers summary stats for sequences

usage: count-median.py [-h] [--version] [-f] [--csv]
 input_counting_table_filename input_sequence_filename
 output_summary_filename

	
input_counting_table_filename

	input k-mer count table filename

	
input_sequence_filename

	input FAST[AQ] sequence filename

	
output_summary_filename

	output summary filename

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

	
--csv

	Use the CSV format for the histogram.Includes column headers.

Count the median/avg k-mer abundance for each sequence in the input file,
based on the k-mer counts in the given k-mer counting table. Can be used
to estimate expression levels (mRNAseq) or coverage (genomic/metagenomic).

The output file contains sequence id, median, average, stddev, and
seq length; fields are separated by spaces. For khmer 1.x
count-median.py will split sequence names at the first space which
means that some sequence formats (e.g. paired FASTQ in Casava 1.8
format) will yield uninformative names. Use --csv to
fix this behavior.

Example:

count-median.py counts.ct tests/test-data/test-reads.fq.gz medians.txt

NOTE: All 'N's in the input sequences are converted to 'G's.

count-overlap.py

Count the overlap k-mers which are the k-mers appearing in two sequence datasets.

usage: count-overlap.py [-h] [--version] [-q] [--ksize KSIZE]
 [--n_tables N_TABLES] [--min-tablesize MIN_TABLESIZE]
 [--csv] [-f]
 input_presence_table_filename input_sequence_filename
 output_report_filename

	
input_presence_table_filename

	input k-mer presence table filename

	
input_sequence_filename

	input sequence filename

	
output_report_filename

	output report filename

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--csv

	Use the CSV format for the curve output in ${output_report_filename}.curve, including column headers.

	
-f, --force

	Overwrite output file if it exists

An additional report will be written to ${output_report_filename}.curve
containing the increase of overlap k-mers as the number of sequences in the
second database increases.

Partitioning

do-partition.py

Load, partition, and annotate FAST[AQ] sequences

usage: do-partition.py [-h] [--version] [-q] [--ksize KSIZE]
 [--n_tables N_TABLES] [--min-tablesize MIN_TABLESIZE]
 [--threads THREADS] [--subset-size SUBSET_SIZE]
 [--no-big-traverse] [--keep-subsets] [-f]
 graphbase input_sequence_filename
 [input_sequence_filename ...]

	
graphbase

	base name for output files

	
input_sequence_filename

	input FAST[AQ] sequence filenames

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
--subset-size <float>, -s <float>

	Set subset size (usually 1e5-1e6 is good)

	
--no-big-traverse

	Truncate graph joins at big traversals

	
--keep-subsets

	Keep individual subsets (default: False)

	
-f, --force

	Overwrite output file if it exists

Load in a set of sequences, partition them, merge the partitions, and
annotate the original sequences files with the partition information.

This script combines the functionality of load-graph.py,
partition-graph.py, merge-partitions.py, and
annotate-partitions.py into one script. This is convenient
but should probably not be used for large data sets, because
do-partition.py doesn't provide save/resume functionality.

load-graph.py

Load sequences into the compressible graph format plus optional tagset.

usage: load-graph.py [-h] [--version] [-q] [--ksize KSIZE]
 [--n_tables N_TABLES] [--min-tablesize MIN_TABLESIZE]
 [--threads THREADS] [--no-build-tagset]
 [--report-total-kmers] [--write-fp-rate] [-f]
 output_presence_table_filename input_sequence_filename
 [input_sequence_filename ...]

	
output_presence_table_filename

	output k-mer presence table filename.

	
input_sequence_filename

	input FAST[AQ] sequence filename

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
--no-build-tagset, -n

	Do NOT construct tagset while loading sequences

	
--report-total-kmers, -t

	Prints the total number of k-mers to stderr

	
--write-fp-rate, -w

	Write false positive rate into .info file

	
-f, --force

	Overwrite output file if it exists

See extract-partitions.py for a complete workflow.

partition-graph.py

Partition a sequence graph based upon waypoint connectivity

usage: partition-graph.py [-h] [--stoptags filename]
 [--subset-size SUBSET_SIZE] [--no-big-traverse]
 [--version] [-f] [--threads THREADS]
 basename

	
basename

	basename of the input k-mer presence table + tagset files

	
-h, --help

	show this help message and exit

	
--stoptags <filename>, -S <filename>

	Use stoptags in this file during partitioning

	
--subset-size <float>, -s <float>

	Set subset size (usually 1e5-1e6 is good)

	
--no-big-traverse

	Truncate graph joins at big traversals

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

The resulting partition maps are saved as '${basename}.subset.#.pmap'
files.

See 'Artifact removal' to understand the stoptags argument.

merge-partition.py

Merge partition map '.pmap' files.

usage: merge-partition.py [-h] [--ksize KSIZE] [--keep-subsets] [--version]
 [-f]
 graphbase

	
graphbase

	basename for input and output files

	
-h, --help

	show this help message and exit

	
--ksize <int>, -k <int>

	k-mer size (default: 32)

	
--keep-subsets

	Keep individual subsets (default: False)

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

Take the ${graphbase}.subset.#.pmap files and merge them all into a single
${graphbase}.pmap.merged file for annotate-partitions.py to use.

annotate-partitions.py

Annotate sequences with partition IDs.

usage: annotate-partitions.py [-h] [--ksize KSIZE] [--version] [-f]
 graphbase input_sequence_filename
 [input_sequence_filename ...]

	
graphbase

	basename for input and output files

	
input_sequence_filename

	input FAST[AQ] sequences to annotate.

	
-h, --help

	show this help message and exit

	
--ksize <int>, -k <int>

	k-mer size (default: 32)

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

Load in a partitionmap (generally produced by partition-graph.py or
merge-partitions.py) and annotate the sequences in the given files with
their partition IDs. Use extract-partitions.py to extract
sequences into separate group files.

Example (results will be in random-20-a.fa.part):

load-graph.py -k 20 example tests/test-data/random-20-a.fa
partition-graph.py example
merge-partitions.py -k 20 example
annotate-partitions.py -k 20 example tests/test-data/random-20-a.fa

extract-partitions.py

Separate sequences that are annotated with partitions into grouped files.

usage: extract-partitions.py [-h] [--max-size MAX_SIZE]
 [--min-partition-size MIN_PART_SIZE]
 [--no-output-groups] [--output-unassigned]
 [--version] [-f]
 output_filename_prefix input_partition_filename
 [input_partition_filename ...]

	
output_filename_prefix

	

	
input_partition_filename

	

	
-h, --help

	show this help message and exit

	
--max-size <int>, -X <int>

	Max group size (n sequences)

	
--min-partition-size <int>, -m <int>

	Minimum partition size worth keeping

	
--no-output-groups, -n

	Do not actually output groups files.

	
--output-unassigned, -U

	Output unassigned sequences, too

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

Example (results will be in example.group0000.fa):

load-graph.py -k 20 example tests/test-data/random-20-a.fa
partition-graph.py example
merge-partitions.py -k 20 example
annotate-partitions.py -k 20 example tests/test-data/random-20-a.fa
extract-partitions.py example random-20-a.fa.part

(extract-partitions.py will produce a partition size distribution
in <base>.dist. The columns are: (1) number of reads, (2) count
of partitions with n reads, (3) cumulative sum of partitions,
(4) cumulative sum of reads.)

Artifact removal

The following scripts are specialized scripts for finding and removing
highly-connected k-mers (HCKs). See Partitioning large data sets (50m+ reads).

make-initial-stoptags.py

Find an initial set of highly connected k-mers.

usage: make-initial-stoptags.py [-h] [--version] [-q] [--ksize KSIZE]
 [--n_tables N_TABLES]
 [--min-tablesize MIN_TABLESIZE]
 [--subset-size SUBSET_SIZE]
 [--stoptags filename] [-f]
 graphbase

	
graphbase

	basename for input and output filenames

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--subset-size <float>, -s <float>

	Set subset size (default 1e4 is prob ok)

	
--stoptags <filename>, -S <filename>

	Use stoptags in this file during partitioning

	
-f, --force

	Overwrite output file if it exists

Loads a k-mer presence table/tagset pair created by load-graph.py, and does
a small set of traversals from graph waypoints; on these traversals, looks
for k-mers that are repeatedly traversed in high-density regions of the
graph, i.e. are highly connected. Outputs those k-mers as an initial set of
stoptags, which can be fed into partition-graph.py, find-knots.py, and
filter-stoptags.py.

The k-mer counting table size options parameters are for a k-mer counting
table to keep track of repeatedly-traversed k-mers. The subset size option
specifies the number of waypoints from which to traverse; for highly
connected data sets, the default (1000) is probably ok.

find-knots.py

Find all highly connected k-mers.

usage: find-knots.py [-h] [--n_tables N_TABLES]
 [--min-tablesize MIN_TABLESIZE] [--version]
 graphbase

	
graphbase

	Basename for the input and output files.

	
-h, --help

	show this help message and exit

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on the size of the k-mer counting table(s)

	
--version

	show program's version number and exit

Load an k-mer presence table/tagset pair created by load-graph, and a set
of pmap files created by partition-graph. Go through each pmap file,
select the largest partition in each, and do the same kind of traversal as
in make-initial-stoptags.py from each of the waypoints in that
partition; this should identify all of the HCKs in that partition. These
HCKs are output to <graphbase>.stoptags after each pmap file.

Parameter choice is reasonably important. See the pipeline in
Partitioning large data sets (50m+ reads) for an example run.

This script is not very scalable and may blow up memory and die horribly.
You should be able to use the intermediate stoptags to restart the
process, and if you eliminate the already-processed pmap files, you can
continue where you left off.

filter-stoptags.py

Trim sequences at stoptags.

usage: filter-stoptags.py [-h] [--ksize KSIZE] [--version] [-f]
 input_stoptags_filename input_sequence_filename
 [input_sequence_filename ...]

	
input_stoptags_filename

	

	
input_sequence_filename

	

	
-h, --help

	show this help message and exit

	
--ksize <int>, -k <int>

	k-mer size

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

Load stoptags in from the given .stoptags file and use them to trim
or remove the sequences in <file1-N>. Trimmed sequences will be placed in
<fileN>.stopfilt.

Digital normalization

normalize-by-median.py

Do digital normalization (remove mostly redundant sequences)

usage: normalize-by-median.py [-h] [--version] [-q] [--ksize KSIZE]
 [--n_tables N_TABLES]
 [--min-tablesize MIN_TABLESIZE] [-C CUTOFF] [-p]
 [-u unpaired_reads_filename] [-s filename]
 [-R filename] [-f] [--save-on-failure]
 [-d DUMP_FREQUENCY] [-o filename]
 [--report-total-kmers] [--force] [-l filename]
 input_sequence_filename
 [input_sequence_filename ...]

	
input_sequence_filename

	Input FAST[AQ] sequence filename.

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
-C <int>, --cutoff <int>

	

	
-p, --paired

	

	
-u <unpaired_reads_filename>, --unpaired-reads <unpaired_reads_filename>

	with paired data only, include an unpaired file

	
-s <filename>, --savetable <filename>

	save the k-mer counting table to disk after allreads are loaded.

	
-R <filename>, --report <filename>

	

	
-f, --fault-tolerant

	continue on next file if read errors are encountered

	
--save-on-failure

	Save k-mer counting table when an error occurs

	
-d <int>, --dump-frequency <int>

	dump k-mer counting table every d files

	
-o <filename>, --out <filename>

	only output a single file with the specified filename; use a single dash "-" to specify that output should go to STDOUT (the terminal)

	
--report-total-kmers, -t

	Prints the total number of k-mers post-normalization to stderr

	
--force

	Overwrite output file if it exists

	
-l <filename>, --loadtable <filename>

	load a precomputed k-mer table from disk

Discard sequences based on whether or not their median k-mer abundance lies
above a specified cutoff. Kept sequences will be placed in <fileN>.keep.

Paired end reads will be considered together if -p is set. If
either read will be kept, then both will be kept. This should result in
keeping (or discarding) each sequencing fragment. This helps with retention
of repeats, especially. With :option: -u/--unpaired-reads,
unpaired reads from the specified file will be read after the paired data
is read.

With -s/--savetable, the k-mer counting table
will be saved to the specified file after all sequences have been
processed. With -d, the k-mer counting table will be
saved every d files for multifile runs; if -s is set,
the specified name will be used, and if not, the name backup.ct
will be used. -l/--loadtable will load the
specified k-mer counting table before processing the specified
files. Note that these tables are are in the same format as those
produced by load-into-counting.py and consumed by
abundance-dist.py.

-f/--fault-tolerant will force the program to continue
upon encountering a formatting error in a sequence file; the k-mer counting
table up to that point will be dumped, and processing will continue on the
next file.

To append reads to an output file (rather than overwriting it), send output
to STDOUT with --out - and use UNIX file redirection syntax (>>) to
append to the file.

Example:

normalize-by-median.py -k 17 tests/test-data/test-abund-read-2.fa

Example:

normalize-by-median.py -p -k 17 tests/test-data/test-abund-read-paired.fa

Example:

normalize-by-median.py -p -k 17 -o - tests/test-data/paired.fq >> appended-output.fq

Example:

normalize-by-median.py -k 17 -f tests/test-data/test-error-reads.fq tests/test-data/test-fastq-reads.fq

Example:

normalize-by-median.py -k 17 -d 2 -s test.ct tests/test-data/test-abund-read-2.fa tests/test-data/test-fastq-reads

Read handling: interleaving, splitting, etc.

extract-long-sequences.py

Extract FASTQ or FASTA sequences longer than specified length (default: 200 bp).

usage: extract-long-sequences.py [-h] [-o OUTPUT] [-l LENGTH]
 input_filenames [input_filenames ...]

	
input_filenames

	Input FAST[AQ] sequence filename.

	
-h, --help

	show this help message and exit

	
-o, --output

	The name of the output sequence file.

	
-l <int>, --length <int>

	The minimum length of the sequence file.

extract-paired-reads.py

Take a mixture of reads and split into pairs and orphans.

usage: extract-paired-reads.py [-h] [--version] [-f] infile

	
infile

	

	
-h, --help

	show this help message and exit

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

The output is two files, <input file>.pe and <input file>.se, placed in the
current directory. The .pe file contains interleaved and properly paired
sequences, while the .se file contains orphan sequences.

Many assemblers (e.g. Velvet) require that you give them either perfectly
interleaved files, or files containing only single reads. This script takes
files that were originally interleaved but where reads may have been
orphaned via error filtering, application of abundance filtering, digital
normalization in non-paired mode, or partitioning.

Example:

extract-paired-reads.py tests/test-data/paired.fq

fastq-to-fasta.py

Converts FASTQ format (.fq) files to FASTA format (.fa).

usage: fastq-to-fasta.py [-h] [-o filename] [-n] input_sequence

	
input_sequence

	The name of the input FASTQ sequence file.

	
-h, --help

	show this help message and exit

	
-o <filename>, --output <filename>

	The name of the output FASTA sequence file.

	
-n, --n_keep

	Option to drop reads containing 'N's in input_sequence file.

interleave-reads.py

Produce interleaved files from R1/R2 paired files

usage: interleave-reads.py [-h] [-o filename] [--version] [-f]
 infiles [infiles ...]

	
infiles

	

	
-h, --help

	show this help message and exit

	
-o <filename>, --output <filename>

	

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

The output is an interleaved set of reads, with each read in <R1> paired
with a read in <R2>. By default, the output goes to stdout unless
-o/--output is specified.

As a "bonus", this file ensures that if read names are not already
formatted properly, they are reformatted consistently, such that
they look like the pre-1.8 Casava format (@name/1, @name/2).

Example:

interleave-reads.py tests/test-data/paired.fq.1 tests/test-data/paired.fq.2 -o paired.fq

readstats.py

Display summary statistics for one or more FASTA/FASTQ files.

usage: readstats.py [-h] [-o filename] [--csv] filenames [filenames ...]

	
filenames

	

	
-h, --help

	show this help message and exit

	
-o <filename>, --output <filename>

	output file for statistics; defaults to stdout.

	
--csv

	Use the CSV format for the statistics, including column headers.

Report number of bases, number of sequences, and average sequence length
for one or more FASTA/FASTQ files; and report aggregate statistics at end.

With -o/:options:`--output`, the output will be saved to the
specified file.

Example:

readstats.py tests/test-data/test-abund-read-2.fa

sample-reads-randomly.py

Uniformly subsample sequences from a collection of files

usage: sample-reads-randomly.py [-h] [-N NUM_READS] [-M MAX_READS]
 [-S NUM_SAMPLES] [-R RANDOM_SEED]
 [--force_single] [-o output_file] [--version]
 [-f]
 filenames [filenames ...]

	
filenames

	

	
-h, --help

	show this help message and exit

	
-N <int>, --num_reads <int>

	

	
-M <int>, --max_reads <int>

	

	
-S <int>, --samples <int>

	

	
-R <int>, --random-seed <int>

	

	
--force_single

	Ignore read pair information if present

	
-o <output_file>, --output <output_file>

	

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exits

Take a list of files containing sequences, and subsample 100,000
sequences (-N/--num_reads) uniformly, using
reservoir sampling. Stop after first 100m sequences
(-M/--max_reads). By default take one subsample,
but take -S/--samples samples if specified.

The output is placed in -o/--output <file>
(for a single sample) or in <file>.subset.0 to <file>.subset.S-1
(for more than one sample).

This script uses the reservoir sampling [http://en.wikipedia.org/wiki/Reservoir_sampling] algorithm.

split-paired-reads.py

Split interleaved reads into two files, left and right.

usage: split-paired-reads.py [-h] [-o output_directory] [-1 output_first]
 [-2 output_second] [-p] [--version] [-f]
 infile

	
infile

	

	
-h, --help

	show this help message and exit

	
-o <output_directory>, --output-dir <output_directory>

	Output split reads to specified directory. Creates directory if necessary

	
-1 <output_first>, --output-first <output_first>

	Output "left" reads to this file

	
-2 <output_second>, --output-second <output_second>

	Output "right" reads to this file

	
-p, --force-paired

	Require that reads be interleaved

	
--version

	show program's version number and exit

	
-f, --force

	Overwrite output file if it exists

Some programs want paired-end read input in the One True Format, which is
interleaved; other programs want input in the Insanely Bad Format, with
left- and right- reads separated. This reformats the former to the latter.

The directory into which the left- and right- reads are output may be
specified using -o/--output-dir. This directory will be
created if it does not already exist.

Alternatively, you can specify the filenames directly with
-1/--output-first and
-2/--output-second, which will override the
-o/--output-dir setting on a file-specific basis.

-p/--force-paired will require the input file to
be properly interleaved; by default, this is not required.

Example:

split-paired-reads.py tests/test-data/paired.fq

Example:

split-paired-reads.py -o ~/reads-go-here tests/test-data/paired.fq

Example:

split-paired-reads.py -1 reads.1 -2 reads.2 tests/test-data/paired.fq

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

Blog posts and additional documentation

Hashtable and filtering

The basic inexact-matching approach used by the hashtable code is
described in this blog post:

http://ivory.idyll.org/blog/jul-10/kmer-filtering

A test data set (soil metagenomics, 88m reads, 10gb) is here:

http://angus.ged.msu.edu.s3.amazonaws.com/88m-reads.fa.gz

Illumina read abundance profiles

khmer can be used to look at systematic variations in k-mer statistics
across Illumina reads; see, for example, this blog post:

http://ivory.idyll.org/blog/jul-10/illumina-read-phenomenology

The fasta-to-abundance-hist [http://github.com/ctb/khmer/blob/master/sandbox/fasta-to-abundance-hist.py]
and abundance-hist-by-position [http://github.com/ctb/khmer/blob/master/sandbox/abundance-hist-by-position.py]
scripts can be used to generate the k-mer abundance profile data, after
loading all the k-mer counts into a .ct file:

first, load all the k-mer counts:
load-into-counting.py -k 20 -x 1e7 25k.ct data/25k.fq.gz

then, build the '.freq' file that contains all of the counts by position
python sandbox/fasta-to-abundance-hist.py 25k.ct data/25k.fq.gz

sum across positions.
python sandbox/abundance-hist-by-position.py data/25k.fq.gz.freq > out.dist

The hashtable method 'dump_kmers_by_abundance' can be used to dump
high abundance k-mers, but we don't have a script handy to do that yet.

You can assess high/low abundance k-mer distributions with the
hi-lo-abundance-by-position script [http://github.com/ctb/khmer/blob/master/sandbox/hi-lo-abundance-by-position.py]:

load-into-counting.py -k 20 25k.ct data/25k.fq.gz
python sandbox/hi-lo-abundance-by-position.py 25k.ct data/25k.fq.gz

This will produce two output files, <filename>.pos.abund=1 and
<filename>.pos.abund=255.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

Choosing table sizes for khmer

If you look at the documentation for the scripts (khmer's command-line interface) you'll
see two mysterious parameters -- -N and -x, or, more
verbosely, -n_tables and --tablesize. What are these, and
how do you specify them?

The really short version

There is no way (except for experience, rules of thumb, and intuition) to
know what these parameters should be up front. So, make the product of
these two parameters be the size of your available memory:

-N 4 -x 4e9

for a machine with 16 GB of free memory, for example. Also see
the rules of thumb, below.

The short version

These parameters specify the maximum memory usage of the primary data
structure in khmer, which is basically N big hash tables of size x.
The product of the number of hash tables and the size of the hash
tables specifies the total amount of memory used.

This table is used to track k-mers. If it is too small, khmer
will fail in various ways (and should complain), but there is no harm
in making it too large. So, the absolute safest thing to do is to
specify as much memory as is available. Most scripts will inform
you of the total memory usage, and (at the end) will complain if it's
too small.

For normalize-by-median, khmer uses one byte per hash entry, so: if
you had 16 GB of available RAM, you should specify something like -N
4 -x 4e9, which multiplies out to about 16 GB.

For the graph partitioning stuff, khmer uses only 1 bit per k-mer, so
you can multiple your available memory by 8: for 16 GB of RAM, you could
use

-N 4 -x 32e9

which multiplies out to 128 Gbits of RAM, or 16 Gbytes.

Life is a bit more complicated than this, however, because some scripts --
load-into-counting and load-graph -- keep ancillary information that will
consume memory beyond this table data structure. So if you run out of
memory, decrease the table size.

Also see the rules of thumb, below.

The real full version

khmer's scripts, at their heart, represents k-mers in a very memory
efficient way by taking advantage of two data structures, Bloom
filters [http://en.wikipedia.org/wiki/Bloom_filter] and Count-Min
Sketches [http://en.wikipedia.org/wiki/Count%E2%80%93min_sketch], that are
both probabilistic and constant memory. The "probabilistic" part
means that there are false positives: the less memory you use, the
more likely it is that khmer will think that k-mers are present when
they are not, in fact, present.

Digital normalization (normalize-by-median and filter-abund) uses
the Count-Min Sketch data structure.

Graph partitioning (load-graph etc.) uses the Bloom filter data structure.

The practical ramifications of this are pretty cool. For example,
your digital normalization is guaranteed not to increase in memory
utilization, and graph partitioning is estimated to be 10-20x more
memory efficient than any other de Bruijn graph representation. And
hash tables (which is what Bloom filters and Count-Min Sketches use)
are really fast and efficient. Moreover, the optimal memory size for
these primary data structures is dependent on the number of k-mers,
but not explicitly on the size of k itself, which is very unusual.

In exchange for this memory efficiency, however, you gain a certain
type of parameter complexity. Unlike your more typical k-mer package
(like the Velvet assembler, or Jellyfish or Meryl or Tallymer), you
are either guaranteed not to run out of memory (for digital
normalization) or much less likely to do so (for partitioning).

The biggest problem with khmer is that there is a minimum hash number
and size that you need to specify for a given number of k-mers, and
you cannot confidently predict what it is before actually loading in
the data. This, by the way, is also true for de Bruijn graph
assemblers and all the other k-mer-based software -- the final memory
usage depends on the total number of k-mers, which in turn depends on
the true size of your underlying genomic variation (e.g. genome or
transcriptome size), the number of errors, and the k-mer size you
choose (the k parameter) [see Conway & Bromage, 2011] [http://www.ncbi.nlm.nih.gov/pubmed?term=21245053]. The number
of reads or the size of your data set is only somewhat correlated with
the total number of k-mers. Trimming protocols, sequencing depth,
and polymorphism rates are all important factors that affect k-mer
count.

The bad news is that we don't have good ways to estimate total k-mer
count a priori, although we can give you some rules of thumb, below.
In fact, counting the total number of distinct k-mers is a somewhat
annoying challenge. Frankly, we recommend just guessing instead of
trying to be all scientific about it.

The good news is that you can never give khmer too much memory! k-mer
counting and set membership simply gets more and more accurate as you
feed it more memory. (Although there may be performance hits from
memory I/O, e.g. see the NUMA architecture [http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access].) The
other good news is that khmer can measure the false positive rate and
detect dangerously low memory conditions. For partitioning, we
actually know what a too-high false positive rate is -- our k-mer
percolation paper [http://arxiv.org/abs/1112.4193] lays out the
math. For digital normalization, we assume that a false positive rate
of 10% is bad. In both cases the data-loading scripts will exit with
an error-code.

Rules of thumb

Just use -N 4, always, and vary the -x parameter.

For digital normalization, we recommend:

	-x 2e9 for any amount of sequencing for a single microbial genome,
MDA-amplified or single colony.

	-x 4e9 for up to a billion mRNAseq reads from any organism. Past that,
increase it.

	-x 8e9 for most eukaryotic genome samples.

	-x 8e9 will also handle most "simple" metagenomic samples (HMP on down)

	For metagenomic samples that are more complex, such as soil or marine,
start as high as possible. For example, we are using -x 64e9 for
~300 Gbp of soil reads.

For partitioning of complex metagenome samples, we recommend starting
as high as you can -- something like half your system memory. So if
you have 256 GB of RAM, use -N 4 -x 256e9 which will use 4 x 256 /
8 = 128 GB of RAM for the basic graph storage, leaving other memory
for the ancillary data structures.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

Partitioning large data sets (50m+ reads)

"Partitioning" is what khmer calls the process of separating reads
that do not connect to each other into different logical bins. The
goal of partitioning is to apply divide & conquer to the process of
metagenomic assembly.

Basic partitioning

The basic workflow for partitioning is in the figure below:

[image: ../_images/partitioning-workflow.png]
Briefly, you load everything into khmer's probabilistic graph
representation; exhaustively explore the graph to find all
disconnected sequences; merge the results of the (parallelized) graph
exploration; annotate sequences with their partition; and then extract
the different partitions into files grouped by partition size. These
groups can then be assembled individually.

Artifact removal

As part of our partitioning research, we discovered that large
Illumina data sets tend to contain a single large, connected
component. This connected component seems to stem from sequencing
artifacts that causes knots in the assembly graph. We have developed
tools to forcibly remove the knot at the heart of the graph.

Here's the workflow:

[image: ../_images/artifact-removal.png]

Running on an example data set

Here is a set of commands for running both basic partitioning and
artifact removal on a small soil metagenomics data set that we've
made available for this purpose.

The data set is about 1.1G and you can download it from here:

https://s3.amazonaws.com/public.ged.msu.edu/khmer/iowa-corn-50m.fa.gz

cd /path/to/data

the next command will create a '50m.ct' and a '50m.tagset',
representing the de Bruijn graph
load-graph.py -k 32 -N 4 -x 16e9 50m iowa-corn-50m.fa.gz

this will then partition that graph. should take a while.
update threads to something higher if you have more cores.
this creates a bunch of files, 50m.subset.*.pmap
partition-graph.py --threads 4 -s 1e5 50m

now, merge the pmap files into one big pmap file, 50m.pmap.merged
merge-partitions.py 50m

next, annotate the original sequences with their partition numbers.
this will create iowa-corn-50m.fa.gz.part
annotate-partitions.py 50m iowa-corn-50m.fa.gz

now, extract the partitions in groups into 'iowa-corn-50m.groupNNNN.fa'
extract-partitions.py iowa-corn-50m iowa-corn-50m.fa.gz.part

at this point, you can assemble the group files individually. Note,
however, that the last one them is quite big? this is because it's
the lump! yay!

if you want to break up the lump, go through the partitioning bit
on the group file, but this time with a twist:
mv iowa-corn-50m.group0005.fa corn-50m.lump.fa

create graph,
load-graph.py -x 8e9 lump corn-50m.lump.fa

create an initial set of stoptags to help in knot-traversal; otherwise,
partitioning and knot-traversal (which is systematic) is really expensive.
make-initial-stoptags.py lump

now partition the graph, using the stoptags file
partition-graph.py --stoptags lump.stoptags lump

use the partitioned subsets to find the k-mers that nucleate the lump
find-knots.py -x 2e8 -N 4 lump

remove those k-mers from the fasta files
filter-stoptags.py *.stoptags corn-50m.lump.fa

now, reload the filtered data set in and partition again.
NOTE: 'load-graph.py' uses the file extension to determine
if the file is formatted as FASTA or FASTQ. The default is
fasta, therefore if your files are fastq formatted you need
to append 'fastq' to the name so that 'load-graph.py'
will parse the file correctly
load-graph.py -x 8e9 lumpfilt corn-50m.lump.fa.stopfilt
partition-graph.py -T 4 lumpfilt
merge-partitions.py lumpfilt
annotate-partitions.py lumpfilt corn-50m.lump.fa.stopfilt
extract-partitions.py corn-50m-lump corn-50m.lump.fa.stopfilt.part

and voila, after all that, you should now have your de-knotted lump in
corn-50m-lump.group*.fa. The *.group????.fa files can now be
assembled individually by your favorite assembler.

Post-partitioning assembly

The 'extract-partitions' script takes reads belonging to each
partition and aggregates them into 'group' files; each group file
contains at least one entire partition (and generally a lot more).
Note, you can control the number of reads in each file (equiv, the
size of these files) with some of the arguments that
'extract-partitions' takes.

Now that you have these files... what do you do with them? The short
answer is: assemble them! Each of these group files contains reads
that do not connect to reads in other files, so the files can be
assembled individually (which is the whole point of partitioning).

If you're using Velvet, checkout the sandbox/velvet-assemble.sh script,
which you can run like this:

bash /path/to/khmer/sandbox/velvet-assemble.sh <groupfile> <k>

This script does three things:

	first, it breaks the reads up into paired reads and single reads,
and puts them in separate files (.pe and .se);

	second, it strips off the partition information from the reads,
which confuses Velvet;

	and third, it runs velveth and velvetg to actually assemble.

You can implement your own approach, of course, but this is an example of
what we do ourselves.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

Known Issues

Some users have reported that normalize-by-median.py will utilize more
memory than it was configured for. This is being investigated in
https://github.com/ged-lab/khmer/issues/266

If your k-mer table is truncated on write, an error may not be reported; this
is being tracked in https://github.com/ged-lab/khmer/issues/443.
However, khmer will now (correctly) fail when trying to read a truncated file
(See #333).

Paired-end reads from Casava 1.8 currently require renaming for use in
normalize-by-median and abund-filter when used in paired mode. The
integration of a fix for this is being tracked in
https://github.com/ged-lab/khmer/issues/23

Some scripts only output FASTA even if given a FASTQ file. This issue
is being tracked in https://github.com/ged-lab/khmer/issues/46

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

Deploying the khmer project tools on Galaxy

This document is for people interested in deploying the khmer tools on
the Galaxy platform.

We are developing the support for running all the khmer scripts in Galaxy [http://galaxyproject.org/].

Install the tools & tool description

In the administrative interface select "Search and browse tool sheds" under
the heading "Tool sheds". Click on "Galaxy test tool shed" and search for
khmer. Click on the "khmer" button and choose "Preview and install". Click the
"Install to Galaxy" button at the top. At the bottom of the next page click
the "Install" button.

Single Output Usage

For one or more files into a single file:

#. Choose 'Normalize By Median' from the 'khmer protocols' section of the
'Tools' menu.

#. Compatible files already uploaded to your Galaxy instance should be listed.
If not then you may need to set their datatype manually [https://wiki.galaxyproject.org/Learn/Datatypes].

#. After selecting the input files specify if they are paired-interleaved
or not.

#. Specify the sample type or show the advanced parameters to set the tablesize
yourself. Consult Choosing table sizes for khmer for assistance.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

An incomplete bibliography of papers using khmer

Digital normalization

Multiple Single-Cell Genomes Provide Insight into Functions of
Uncultured Deltaproteobacteria in the Human Oral Cavity. Campbell et
al., PLoS One, 2013, doi:10.1371/journal.pone.0059361. [paper link [http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0059361]]

Insights into archaeal evolution and symbiosis from the genomes of a
nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool,
Yellowstone National Park. Podar et al., Biology Direct, 2013
doi:10.1186/1745-6150-8-9.
[paper link [http://www.biology-direct.com/content/8/1/9/abstract]]

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer user documentation

How to get help

First, be sure that you:

	Read the documentation (this site)

	Google search for the error output and/or keywords related to your problem.
Here you can search results from the mailing list, where others may
have discussed solutions to the same issue.

 The khmer developer documentation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

The khmer developer documentation

This section of the documentation is for people who are contributing
(or would like to contribute to) the khmer project codebase, either by
contributing code or by helping improve the documentation.

Please note that this project is released with a Contributor Code of Conduct.
By participating in the development of this project you agree to abide by its
terms.

Contents:

	Contributor Code of Conduct

	Getting started with khmer development

	A quick guide to testing (for khmer)

	A quick guide to the khmer codebase

	Coding guidelines and code review checklist

	Command line scripts, scripts/, and sandbox/

	A guide for khmer committers

	Releasing a new version of khmer

	Miscellaneous implementation details

	Development miscellany

	Crazy ideas

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Contributor Code of Conduct

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

Contributor Code of Conduct

As contributors and maintainers of this project, we pledge to respect
all people who contribute through reporting issues, posting feature
requests, updating documentation, submitting pull requests or patches,
and other activities.

We are committed to making participation in this project a
harassment-free experience for everyone, regardless of level of
experience, gender, gender identity and expression, sexual orientation,
disability, personal appearance, body size, race, age, or religion.

Examples of unacceptable behavior by participants include the use of
sexual language or imagery, derogatory comments or personal attacks,
trolling, public or private harassment, insults, or other unprofessional
conduct.

Project maintainers have the right and responsibility to remove, edit,
or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct. Project
maintainers or contributors who do not follow the Code of Conduct may be
removed from the project team.

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by emailing khmer-project@idyll.org which only goes to C. Titus Brown and
Michael R. Crusoe. To report an issue involving either of them please email
Judi Brown Clarke, Ph.D. the Diversity Director
at the BEACON Center for the Study of Evolution in Action, an NSF Center for
Science and Technology.

This Code of Conduct is adapted from the Contributor
Covenant [http://contributor-covenant.org], version 1.0.0, available at
http://contributor-covenant.org/version/1/0/0/

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Getting started with khmer development

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

Getting started with khmer development

This document is for people who would like to contribute to khmer. It
walks first-time contributors through making their own copy of khmer,
building it, and submitting changes for review and merge into the master
copy of khmer.

Start by making your own copy of khmer and setting yourself up for
development; then, build khmer and run the tests; and finally, claim
an issue and start developing!

If you're unfamiliar with git and branching in particular, check out
the git-scm book [http://git-scm.com/book/en/Git-Branching].

We've provided a quick guide to the khmer code base here:
A quick guide to the khmer codebase.

One-time Preparation

	Install the dependencies.

OS X users

	Install Xcode from the Mac App Store (requires root) [https://developer.apple.com/xcode/].

	Register as an Apple Developer [https://developer.apple.com/register].

	Install the Xcode command-line tools: Xcode -> preferences ->
Downloads -> Command Line Tools (requires root).

Linux users

	Install the python development environment, virtualenv, pip, gcc, and
g++.

On recent Debian and Ubuntu this can be done with:

sudo apt-get install python2.7-dev python-virtualenv python-pip gcc \
g++ git astyle gcovr cppcheck

For RHEL6:

sudo yum install -y python-devel python-pip git gcc gcc-c++ make
sudo pip install virtualenv

For Arch Linux:

sudo pacman -S python2 python2-pip python2-virtualenv gcc make

	Get a GitHub [http://github.com] account.

(We use GitHub to manage khmer contributions.)

	Fork github.com/ged-lab/khmer [http://github.com/ged-lab/khmer].

Visit that page, and then click on the 'fork' button (upper right).

(This makes a copy of the khmer source code in your own GitHub account.)

	Clone your copy of khmer to your local development environment.

Your clone URL should look something like this:

https://github.com/empty-titus/khmer.git

and the UNIX shell command should be:

git clone https://github.com/empty-titus/khmer.git

(This makes a local copy of khmer on your development machine.)

	Add a git reference to the khmer ged-lab repository:

cd khmer
git remote add ged https://github.com/ged-lab/khmer.git
cd ../

(This makes it easy for you to pull down the latest changes in the
main repository.)

	Create a virtual Python environment within which to work with
virtualenv [https://pypi.python.org/pypi/virtualenv]:

python2.7 -m virtualenv env

This gives you a place to install packages necessary for running khmer.

OS X users and others may need to download virtualenv first:

curl -O https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.11.6.tar.gz
tar xzf virtualenv*
cd virtualenv-*; python2.7 virtualenv.py ../env; cd ..

Mac ports [https://www.macports.org/] users on the OS X platform can
install pip by execution from the command line:

sudo port install py27-pip

Homebrew [http://brew.sh/] users on the OS X platform will have pip
already installed

Conda [https://github.com/conda/conda] users on any platform
should instead create a separate Conda environment:

conda create -n khmer anaconda

	Activate the virtualenv and install a few packages:

source env/bin/activate
cd khmer
make install-dependencies

(This installs Sphinx [http://sphinx-doc.org/] and nose [https://nose.readthedocs.org/en/latest/], packages we use for
building the documentation and running the tests.)

In Conda to activate the previously created environment and install
dependencies:

source activate khmer
cd khmer
make install-dependencies

	Cppcheck installation:

Debian [https://www.debian.org/] and
Ubuntu [http://www.ubuntu.com/] Linux distro users can
install cppcheck by executing from the command line:

sudo apt-get install cppcheck

Mac ports [https://www.macports.org/] users on the OS X platform can
install cppcheck by executing from the command line:

sudo port install cppcheck

Homebrew [http://brew.sh/] users on the OS X platform can
install cppcheck by executing from the command line:

sudo brew install cppcheck

Building khmer and running the tests

	Activate (or re-activate) the virtualenv:

source ../env/bin/activate

... or for Conda users:

source activate khmer

You can run this many times without any ill effects.

(This puts you in the development environment.)

	Build khmer:

make

If this fails, we apologize -- please go create a new issue [https://github.com/ged-lab/khmer/issues?direction=desc&sort=created&state=open],
paste in the failure message, and we'll try to help you work through it!

(This takes the C++ source code and compiles it into something that Python
can run.)

	Run the tests:

make test

You should see lots of output, with something like:

Ran 360 tests in 10.403s

OK

at the end.

(This will run all of the Python tests in the tests/ directory.)

Congratulations! You're ready to develop!

Claiming an issue and starting to develop

	Find an open issue and claim it.

Go to the list of open khmer issues [https://github.com/ged-lab/khmer/issues?direction=desc&sort=created&state=open]
and find one you like; we suggest starting with the low-hanging fruit issues [https://github.com/ged-lab/khmer/issues?direction=desc&labels=low-hanging-fruit&page=1&sort=created&state=open]).

Once you've found an issue you like, make sure that no one has been
assigned to it (see "assignee", bottom right near "notifications").
Then, add a comment "I am working on this issue." You've staked
your claim!

(We're trying to avoid having multiple people working on the same issue.)

	In your local copy of the source code, update your master branch
from the main khmer master branch:

git checkout master
git pull ged master

(This pulls in all of the latest changes from whatever we've been
doing on ged-lab.)

	Create a new branch and link it to your fork on GitHub:

git checkout -b fix/issue_number
git push -u origin fix/issue_number

where you replace "issue_number" with the number of the issue.

(This is the set of changes you're going to ask to be merged into khmer.)

	Make some changes and commit them.

This will be issue dependent ;).

(You should visit and read Coding guidelines and code review checklist.)

	Periodically update your branch from the main khmer master branch:

git pull ged master

(This pulls in all of the latest changes from whatever we've been
doing on ged-lab - important especially during periods of fast change
or for long-running pull requests.

	Run the tests and/or build the docs before pushing to GitHub:

make doc test pep8

Make sure they all pass!

	Push your branch to your own GitHub fork:

git push origin

(This pushes all of your changes to your own fork.)

	Repeat until you're ready to merge your changes into "official" khmer.

	Set up a Pull Request asking to merge things into the central khmer
repository.

In a Web browser, go to your GitHub fork of khmer, e.g.:

https://github.com/empty-titus/khmer

and you will see a list of "recently pushed branches" just above the
source code listing. On the right side of that should be a
"Compare & pull request" green button. Click on it!

Now:

	add a descriptive title ("updated tests for XXX")

	put the issue number in the comment ("fixes issue #532")

then click "Create pull request."

(This creates a new issue where we can all discuss your proposed
changes; the khmer team will be automatically notified and you will
receive e-mail notifications as we add comments. See GitHub flow [http://scottchacon.com/2011/08/31/github-flow.html] for more
info.)

	Paste in the committer checklist from Coding guidelines and code review checklist
and, after its pasted in, check off as many of the boxes as you can.

	As you add new commits to address bugs or formatting issues, you can keep
pushing your changes to the pull request by doing:

git push origin

	When you are ready to have the pull request reviewed, please mention
@luizirber, @camillescott, @mr-c, or @ctb with a comment 'Ready for review!'

	The khmer team will now review your pull request and communicate
with you through the pull request page. Please feel free to add
'ping!' and an @ in the comments if you are looking for feedback
-- this will alert us that you are still on the line -- but we will
automatically get notified of your pull request and any new
comments, so use sparingly.

If this is still your first issue, please don't take another issue until
we've merged your first one - thanks!

	If we request changes, return to the step "Make some changes and
commit them" and go from there. Any additional commits you make and
push to your branch will automatically be added to the pull request
(which is pretty dang cool.)

After your first issue is successfully merged...

You're now an experienced GitHub user! Go ahead and take some more
tasks; you can broaden out beyond the low hanging fruit if you like.

Here are a few suggestions:

	If you're knowledgeable in C++ and/or Python and/or documentation
and/or biology, we'd love to attract further contributions to khmer.
Please visit the issues list and browse about and find something
interesting looking.

	One general thing we'd like to do is increase our test coverage.
You can go find test coverage information on our continuous
integration server [http://ci.ged.msu.edu/job/khmer-master/label=linux/cobertura] by
clicking down to individual files; or, ask us on
khmer-project@idyll.org for suggestions.

	Ask us! Ask khmer-project@idyll.org for suggestions on what to do next.
We can suggest particularly ripe low-hanging fruit, or find some other
issues that suit your interests and background.

	You can also help other people out by watching for new issues or
looking at pull requests. Remember to be nice and polite!

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 A quick guide to testing (for khmer)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

A quick guide to testing (for khmer)

This document is for contributors new to automated testing, and explains
some of the motivation and logic behind the khmer project's testing
approach.

One of our most important "secret sauces" for khmer development is
that we do a fair bit of testing to make sure our code works and keeps
working!

	We maintain fairly complete test coverage of our code. What this
means is that we have automated tests that, when run, execute most
of the lines of Python and C++ code in our lib/, khmer/ and scripts/
directories. This doesn't guarantee things are correct, but it
does mean that at least most of the code works at some basic level.

	we have other tests that we run periodically (for example, before
each release) -- see Releasing a new version of khmer for details. These tests
check that our code works on multiple systems and with other
people's software.

CTB and others have written a great deal about testing, and testing in
Python in particular. Here's an introductory guide [http://ivory.idyll.org/articles/nose-intro.html] CTB wrote a long
time ago. You might also be interested in reading this description
of the different kinds of tests [http://www.ibm.com/developerworks/library/j-test/index.html].

For the more general motivation, see the Lack of Testing Death Spiral [http://ivory.idyll.org/blog/software-quality-death-spiral.html].

But... how do you do testing??

First, let's talk about specific goals for testing. What should you
be aiming for tests to do? You can always add more testing code, but
that might not be useful if they are redundant or over-complicated.

An overall rule is to "keep it simple" -- keep things as simple as
possible, testing as few things as possible in each test.

We suggest the following approach to writing tests for new code:

	Write a test that just runs the new code, generally by copying existing
test code to a new test and changing it. Don't do anything clever for the
first test -- just run something straightforward, and try to use existing
data.

	Decide which use cases should be tested. This is necessarily code
specific but our main advice is "don't be clever" -- write some tests
to make sure that the code basically works.

	Add in tests for edge cases. By this we mean look for special cases in
your code -- if statements, fence-post bound errors, etc. -- and write
tests that exercise those bits of code specifically.

	Make sure tests that expect a function call to fail (esp. with
fail_ok=True) are failing for the expected reason. Run the code from the
command line and see what the behavior is. For troubleshooting tests,
catch the error with try: ... except: or print err.

For adding tests to old code, we recommend a mix of two approaches:

	use "stupidity driven testing" [http://ivory.idyll.org/blog/stupidity-driven-testing.html] and
write tests that recapitulate bugs before we fix those bugs.

	look at test coverage (see khmer's cobertura test coverage, here [http://ci.ged.msu.edu/job/khmer-master/label=linux/cobertura]) and
identify lines of C++ or Python code that are not being executed by
the current tests. Then write new tests targeting the new code.

Next, to add a test, you have two options: either write a new one from
scratch, or copy an existing one. (We recommend the latter.)

To write a new one, you'll need to know how to write tests. For
getting an idea of the syntax, read this introductory guide [http://ivory.idyll.org/articles/nose-intro.html] and the official
documentation [https://nose.readthedocs.org/en/latest/writing_tests.html]. Then
find the right file in tests/*.py and add your test!

A better approach is, frankly, to go into the existing test code, find
a test that does something similar to what you want to do, copy it,
rename it, and then modify it to do the new test.

Finally, where do you add new tests and how do you run just your test?

Put new tests somewhere in tests/*.py. If you have trouble
figuring out what file to add them to, just put them in some file
and we'll help you figure out where to move them when we do code
review.

To run one specific test rather than all of them, you can do:

./setup.py nosetests --tests tests/test_scripts.py:test_load_into_counting

Here, you're running just one test -- the test function named
test_load_into_counting in the file test_scripts.py.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 A quick guide to the khmer codebase

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

A quick guide to the khmer codebase

This document describes the khmer project's directory layout.

The ChangeLog file lists changes to the codebase, most recent first.

The lib/ directory contains all of the C++ code.

The khmer/ directory contains the khmer package (khmer/__init__.py etc)
and the C++-to-Python bridge (khmer/_khmermodule.cc).

The scripts/ and sandbox/ directory contain Python command-line scripts.

The tests/ directory contains all of the tests. Each test is a function in
one of the tests/test*.py files.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Coding guidelines and code review checklist

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

Coding guidelines and code review checklist

This document is for anyone who want to contribute code to the khmer
project, and describes our coding standards and code review checklist.

Coding standards

All plain-text files should have line widths of 80 characters or less unless
that is not supported for the particular file format.

For C++, we use Todd Hoff's coding standard [http://www.possibility.com/Cpp/CppCodingStandard.html], and
astyle -A10 / "One True Brace Style" [http://astyle.sourceforge.net/astyle.html] indentation and
bracing. Note: @CTB needs Emacs settings that work for this.

Vim users may want to set the ARTISTIC_STYLE_OPTIONS shell variable to "-A10
--max-code-length=80" and run `:%!astyle` to reformat. The four space
indentation can be set with:

set expandtab
set shiftwidth=4
set softtabstop=4

For Python, PEP 8 [http://www.python.org/dev/peps/pep-0008/] is our
standard. The `pep8` and `autopep8` Makefile targets are helpful.

Code, scripts, and documentation must have its spelling checked. Vim users can
run:

:setlocal spell spelllang=en_us

Use]s and [s to navigate between misspellings and z= to suggest a
correctly spelled word. zg will add a word as a good word.

GNU aspell can also be used to check the spelling in a single file:

aspell check --mode ccpp $filename

Code Review

Please read 11 Best Practices for Peer Code Review [http://smartbear.com/SmartBear/media/pdfs/WP-CC-11-Best-Practices-of-Peer-Code-Review.pdf].

See also Code reviews: the lab meeting for code [http://fperez.org/py4science/code_reviews.html] and
the PyCogent coding guidelines [http://pycogent.org/coding_guidelines.html].

Checklist

Copy and paste the following into a pull request comment when it is
ready for review:

- [] Is it mergeable?
- [] Did it pass the tests?
- [] If it introduces new functionality in scripts/ is it tested?
 Check for code coverage with `make clean diff-cover`
- [] Is it well formatted? Look at `make pep8`, `make diff_pylint_report`,
 `make cppcheck`, and `make doc` output. Use `make format` and manual
 fixing as needed.
- [] Did it change the command-line interface? Only additions are allowed
 without a major version increment. Changing file formats also requires a
 major version number increment.
- [] Is it documented in the ChangeLog?
 http://en.wikipedia.org/wiki/Changelog#Format
- [] Was a spellchecker run on the source code and documentation after
 changes were made?
- [] Is the Copyright year up to date?

Note that after you submit the comment you can check and uncheck
the individual boxes on the formatted comment; no need to put x or y
in the middle.

CPython Checklist

Here's a checklist for new CPython types with future-proofing for Python 3:

- [] the CPython object name is of the form `khmer_${OBJECTNAME}_Object`
- [] Named struct with `PyObject_HEAD` macro
- [] `static PyTypeObject khmer_${OBJECTNAME}_Type` with the following
 entries
 - [] `PyVarObject_HEAD_INIT(NULL, 0)` as the object init (this includes
 the `ob_size` field).
 - [] all fields should have their name in a comment for readability
 - [] The `tp_name` filed is a dotted name with both the module name and
 the name of the type within the module. Example: `khmer.ReadAligner`
 - [] Deallocator defined and cast to `(destructor)` in tp_dealloc
 - [] The object's deallocator must be
 `Py_TYPE(obj)->tp_free((PyObject*)obj);`
 - [] Do _not_ define a `tp_getattr`
 - [] BONUS: write methods to present the state of the object via
 `tp_str` & `tp_repr`
 - [] _Do_ pass in the array of methods in `tp_methods`
 - [] _Do_ define a new method in `tp_new`
- [] PyMethodDef arrays contain doc strings
 - [] Methods are cast to `PyCFunctions`s
- [] Type methods use their type Object in the method signature.
- [] Type creation method decrements the reference to self
 (`Py_DECREF(self);`) before each error-path exit (`return NULL;`)
- [] No factory methods. Example: `khmer_new_readaligner`
- [] Type object is passed to `PyType_Ready` and its return code is checked
 in `init_khmer()`
- [] The reference count for the type object is incremented before adding
 it to the module: `Py_INCREF(&khmer_${OBJECTNAME}_Type);`.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Command line scripts, scripts/, and sandbox/

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

Command line scripts, scripts/, and sandbox/

Note

This document applies through khmer/oxli 2.0/3.0 (see
Roadmap to v2.0, v3.0, v4.0) - we will revisit when the Python API falls
under semantic versioning for oxli 4.0.

khmer has two conflicting goals: first, we want to provide a reliable
piece of software to our users; and second, we want to be flexible and
enable exploration of new algorithms and programs. To this end,
we've split our command line scripts across two directories,
scripts/ and sandbox/. The former is the staid, boring, reliable
code; the latter is a place for exploration.

As a result, we are committed to high test coverage, stringent code
review, and Semantic Versioning [http://semver.org/] for files in
scripts/, but explicitly not committed to this for files and
functionality implemented in sandbox/. So, putting a file into
scripts/ is a big deal, especially since it increases our maintenance
burden for the indefinite future.

We've roughed out the following process for moving scripts into scripts/:

	Command line scripts start in sandbox/;

	Once their utility is proven (in a paper, for example), we can propose to
move them into scripts/;

	There's a procedure for moving scripts from sandbox/ into scripts/.

Read on!

Sandbox script requirements and suggestions

All scripts in sandbox/ must:

	be importable (enforced by test_import_all in
test_sandbox_scripts.py)

	be mentioned in sandbox/README.rst

	have a hash-bang line (#! /usr/bin/env python2) at the top

	be command-line executable (chmod a+x)

	have a Copyright message (see below)

	have lowercase names

	use '-' as a word separator, rather than '_' or CamelCase

All new scripts being added to sandbox/ should:

	have decent automated tests

	be used in a protocol (see khmer-protocols) or a recipe (see khmer-recipes)

	be pep8 clean and pylint clean-ish (see make pep8 and make_diff_pylint).

Command line standard options for scripts/

All scripts in scripts/ should have the following options, if they could apply:

	--version - should always apply

	--help - should always apply

	--force - override any sanity checks that may prevent the script from running

	--loadtable and --savetable - where appropriate (see khmer_args.py)

Copyright message

Our current Copyright message is:

#
This file is part of khmer, http://github.com/ged-lab/khmer/, and is
Copyright (C) Michigan State University, 2009-2015. It is licensed under
the three-clause BSD license; see doc/LICENSE.txt.
Contact: khmer-project@idyll.org
#

The beginning year should be the first year that this file existed in
the repo; the end year should be the last year a coding change was
made in the file.

Upgrading a script from 'sandbox' to 'scripts'

First, everything needed (all library support code) should be already
committed to khmer master after the usual review process; the relevant
script(s) should be in sandbox/.

Second, an issue should be started explicitly to discuss whether the
script(s) should be moved from sandbox/ into scripts/. This issue
should discuss the general need for this script, outside of a particular
paper pipeline. (Note that there is no imperative to move a script
out of sandbox/; if we think it's useful code to have around and
want to keep it functioning, we should just add in automated tests and
otherwise level it up.)

Third, assuming we reach general agreement about moving the script(s)
into scripts/, start a pull request to do so, referencing the
issue and containing the following checklist. The PR should start by
moving the script from sandbox/ into scripts/, and moving the
tests out of the test_sandbox_scripts.py file.

Last but not least, intensive code review may raise more general
issues that could apply to the entire code base; if contentious or
needing discussion, these issues may be punted to general issues so as
to not block a merge.

A checklist for moving a script into the scripts/ directory from sandbox/

Copy or paste this checklist into the PR, in addition to the normal
development/PR checklist:

- [] most or all lines of code are covered by automated tests (see output of ``make diff-cover``)
- [] ``make diff_pylint`` is clean
- [] the script has been updated with a ``get_parser()`` and added to doc/user/scripts.txt
- [] argparse help text exists, with an epilog docstring, with examples and options
- [] standard command line options are implemented
- [] version and citation information is output to STDERR (`khmer_args.info(...)`)
- [] support '-' (STDIN) as an input file, if appropriate
- [] support designation of an output file (including STDOUT), if appropriate
- [] runtime diagnostic information (progress, etc.) is output to STDERR
- [] script has been removed from sandbox/README.rst

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 A guide for khmer committers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

A guide for khmer committers

This document is for people with commit rights to github.com/ged-lab/khmer.

If you have commit privileges to the ged-lab/khmer repository, here are a
few useful tips.

First, never merge something unless it's been through a review! This
rule can be broken under specific conditions when doing a release; see
Releasing a new version of khmer.

Second, need to force another continuous integration run? Put "test
this please" in a comment. This can be used to ask our continuous
integration system to run on someone else's pull request -- by
default, it only runs on commits from people who have write privileges
to khmer, so you may need to do this if you're reviewing someone else's
pull request.

Third, we ask that all contributors set up standing Pull Requests
while they are working something. (This is a requirement if
you're in the GED lab.) This lets us track what's going on. On the
flip side, please do not review pull requests until they are indicated
as "ready for review".

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Releasing a new version of khmer

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

Releasing a new version of khmer

This document is for khmer release managers, and details the process
for making a new release of the khmer project.

How to make a khmer release candidate

Michael R. Crusoe, Luiz Irber, and C. Titus Brown have all been
release makers, following this checklist by MRC.

	The below should be done in a clean checkout:

cd `mktemp -d`
git clone git@github.com:ged-lab/khmer.git
cd khmer

	(Optional) Check for updates to versioneer:

pip install --upgrade versioneer
versioneer-installer

git diff

./setup.py versioneer
git diff
git commit -m -a "new version of versioneer.py"
or
git checkout -- versioneer.py khmer/_version.py khmer/__init__.py MANIFEST.in

	Review the git logs since the last release and diffs (if needed) and ensure
that the ChangeLog is up to date:

git log --minimal --patch `git describe --tags --always --abbrev=0`..HEAD

	Review the issue list for any new bugs that will not be fixed in this
release. Add them to doc/known-issues.txt

	Verify that the build is clean: http://ci.ged.msu.edu/job/khmer-master/

	Submit a build to Coverity Scan if it hasn't been done
recently. You can get the token from
https://gitlab.msu.edu/ged-lab/ged-internal-docs/wikis/coverity-scan
or https://scan.coverity.com/projects/621?tab=project_settings

virtualenv coverityenv
source coverityenv/bin/activate
make install-dependencies
make clean
cov_analysis_dir=~/src/coverity/cov-analysis-linux64-7.5.0/ make coverity-build
COVERITY_TOKEN=${COVERITY_TOKEN} make coverity-upload

	Set your new version number and release candidate:

new_version=1.3
rc=rc1

and then tag the release candidate with the new version number prefixed by
the letter 'v':

git tag v${new_version}-${rc}
git push --tags git@github.com:ged-lab/khmer.git

	Test the release candidate. Bonus: repeat on Mac OS X:

cd ..
virtualenv testenv1
virtualenv testenv2
virtualenv testenv3
virtualenv testenv4
First we test the tag

cd testenv1
source bin/activate
git clone --depth 1 --branch v${new_version}-${rc} https://github.com/ged-lab/khmer.git
cd khmer
make install-dependencies
make test
normalize-by-median.py --version 2>&1 | grep ${new_version}-${rc} && \
 echo 1st manual version check passed
pip uninstall -y khmer; pip uninstall -y khmer; make install
mkdir ../not-khmer # if there is a subdir named 'khmer' nosetest will execute tests
there instead of the installed khmer module's tests
pushd ../not-khmer; nosetests khmer --attr '!known_failing'; popd

Secondly we test via pip

cd ../testenv2
source bin/activate
pip install -U setuptools==3.4.1
pip install -e git+https://github.com/ged-lab/khmer.git@v${new_version}-${rc}#egg=khmer
cd src/khmer
make install-dependencies
make dist
make test
cp dist/khmer*tar.gz ../../../testenv3/
pip uninstall -y khmer; pip uninstall -y khmer; make install
cd ../.. # no subdir named khmer here, safe for nosetesting installed khmer module
normalize-by-median.py --version 2>&1 | grep ${new_version}-${rc} && \
 echo 2nd manual version check passed
nosetests khmer --attr '!known_failing'

Is the distribution in testenv2 complete enough to build another
functional distribution?

cd ../testenv3/
source bin/activate
pip install -U setuptools==3.4.1
pip install khmer*tar.gz
pip install nose
tar xzf khmer*tar.gz
cd khmer*
make dist
make test
pip uninstall -y khmer; pip uninstall -y khmer; make install
mkdir ../not-khmer
pushd ../not-khmer ; nosetests khmer --attr '!known_failing' ; popd

	Publish the new release on the testing PyPI server. You will need
to change your PyPI credentials as documented here:
https://wiki.python.org/moin/TestPyPI. You may need to re-register:

python setup.py register --repository test

Now, upload the new release:

python setup.py sdist upload -r test

Test the PyPI release in a new virtualenv:

cd ../../testenv4
source bin/activate
pip install -U setuptools==3.4.1
pip install screed nose
pip install -i https://testpypi.python.org/pypi --pre --no-clean khmer
nosetests khmer --attr '!known_failing'
normalize-by-median.py --version 2>&1 | grep ${new_version}-${rc} && \
 echo 3rd manual version check passed
cd build/khmer
make test

	Do any final testing (BaTLab and/or acceptance tests).

	Make sure any release notes are merged into doc/release-notes/.

How to make a final release

When you've got a thoroughly tested release candidate, cut a release like
so:

	Create the final tag and publish the new release on PyPI (requires an
authorized account).:

cd ../../../khmer
git tag v${new_version}
python setup.py register sdist upload

	Delete the release candidate tag and push the tag updates to GitHub.:

git tag -d v${new_version}-${rc}
git push git@github.com:ged-lab/khmer.git
git push --tags git@github.com:ged-lab/khmer.git

	Add the release on GitHub, using the tag you just pushed. Name
it 'version X.Y.Z', and copy and paste in the release notes.

	Make a binary wheel on OS X.:

virtualenv build
cd build
source bin/activate
pip install -U setuptools==3.4.1 wheel
pip install --no-clean khmer==${new_version}
cd build/khmer
./setup.py bdist_wheel upload

	Update Read the Docs to point to the new version. Visit
https://readthedocs.org/builds/khmer/ and 'Build Version: master' to pick up
the new tag. Once that build has finished check the "Activate" box next to
the new version at https://readthedocs.org/dashboard/khmer/versions/ under
"Choose Active Versions". Finally change the default version at
https://readthedocs.org/dashboard/khmer/advanced/ to the new version.

	Delete any RC tags created:

git tag -d ${new_version}-${rc}
git push origin :refs/tags/${new_version}-${rc}

	Tweet about the new release.

	Send email including the release notes to khmer@lists.idyll.org
and khmer-announce@lists.idyll.org

BaTLab testing

The UW-Madison Build and Test Lab provides the khmer project with a free
cross-platform testing environment.

	Connect to their head node:

ssh mcrusoe@submit-1.batlab.org

	Move into the khmer directory and download a release from PyPI's main server
or the test PyPI server:

cd khmer/
wget https://testpypi.python.org/packages/source/k/khmer/khmer-1.0.1-rc3.tar.gz
vim khmer-v1.0.inputs # change the 'scp_file' to point to the release
vim khmer-v1.0.run-spec # change 'project_version' at bottom
nmi_submit khmer-v1.0.run-spec

Setuptools Bootstrap

ez_setup.py is from https://bitbucket.org/pypa/setuptools/raw/bootstrap/

Before major releases it should be examined to see if there are new
versions available and if the change would be useful

Versioning Explanation

Versioneer, from https://github.com/warner/python-versioneer, is used to
determine the version number and is called by Setuptools and Sphinx. See the
files versioneer.py, the top of khmer/__init__.py,
khmer/_version.py, setup.py, and doc/conf.py for the
implementation.

The version number is determined through several methods: see
https://github.com/warner/python-versioneer#version-identifiers

If the source tree is from a git checkout then the version number is derived by
git describe --tags --dirty --always. This will be in the format
${tagVersion}-${commits_ahead}-${revision_id}-${isDirty}. Example:
v0.6.1-18-g8a9e430-dirty

If from an unpacked tarball then the name of the directory is queried.

Lacking either of the two git-archive will record the version number at the top
of khmer/_version.py via the $Format:%d$ and $Format:%H$
placeholders enabled by the "export-subst" entry in .gitattributes.

Non source distributions will have a customized khmer/_version.py that
contains hard-coded version strings. (see build/*/khmer/_version.py after a
python setup.py build for an example)

ez_setup.py bootstraps Setuptools (if needed) by downloading and installing
an appropriate version

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Miscellaneous implementation details

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

Miscellaneous implementation details

Partition IDs are "stored" in FASTA files as an integer in the last
tab-separated field. Yeah, dumb, huh?

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Development miscellany

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

Development miscellany

Third-party use

We ask that third parties who build upon the codebase to do so from a
versioned release. This will help them determine when bug fixes apply and
generally make it easier to collaborate. If more intensive modifications happen
then we request that the repository is forked, again preferably from a version
tag.

Build framework

'make' should build everything, including tests and "development" code.

git and GitHub strategies

Still in the works, but read this [http://scottchacon.com/2011/08/31/github-flow.html].

Make a branch on ged-lab (preferred so others can contribute) or fork the
repository and make a branch there.

Each piece or fix you are working on should have its own branch; make a pull-
request to ged-lab/master to aid in code review, testing, and feedback.

If you want your code integrated then it needs to be mergable

Example pull request update using the command line:

	
	Clone the source of the pull request (if needed)

	git clone git@github.com:mr-c/khmer.git

	
	Checkout the source branch of the pull request

	git checkout my-pull-request

	
	Pull in the destination of the pull request and resolve any conflicts

	git pull git@github.com:ged-lab/khmer.git master

	Push your update to the source of the pull request git push

	Jenkins will automatically attempt to build and test your pull requests.

Code coverage

Jenkins calculates code coverage for every build. Navigate to the results from
the master node first to view the coverage information.

Code coverage should never go down and new functionality needs to be tested.

Pipelines

All khmer scripts used by a published recommended analysis pipeline must be
included in scripts/ and meet the standards therein implied.

Command line scripts

Python command-line scripts should use '-' instead of '_' in the name.
(Only filenames containing code for import imported should use _.)

Please follow the command-line conventions used under scripts/. This
includes most especially standardization of '-x' to be hash table size,
'-N' to be number of hash tables, and '-k' to always refer to the
k-mer size.

Command line thoughts:

If a filename is required, typically UNIX commands don't use a flag to
specify it.

Also, positional arguments typically aren't used with multiple files.

CTB's overall philosophy is that new files, with new names, should
be created as the result of filtering etc.; this allows easy
chaining of commands. We're thinking about how best to allow
override of this, e.g.

filter-abund.py <ct file> <filename> [-o <filename.keep>]

All code in scripts/ must have automated tests; see tests/test_scripts.py.
Otherwise it belongs in sandbox/.

When files are overwritten, they should only be opened to be overwritten
after the input files have been shown to exist. That prevents stupid
command like mistakes from trashing important files.

It would be nice to allow piping from one command to another where possible.
But this seems complicated.

CTB: should we squash output files (overwrite them if they exist), or not?
So far, leaning towards 'not', as that way no one is surprised and loses
their data.

A general error should be signaled by exit code 1 and success by 0. Linux
supports exit codes from 0 to 255 where the value 1 means a general
error. An exit code of -1 will get converted to 255.

CLI reading:

http://stackoverflow.com/questions/1183876/what-are-the-best-practices-for-implementing-a-cli-tool-in-perl

http://catb.org/esr/writings/taoup/html/ch11s06.html

http://figshare.com/articles/tutorial_pdf/643388

Python / C integration

The Python extension that wraps the C++ core of khmer lives in
khmer/_khmermodule.CC

This wrapper code is tedious and annoying so we use a static analysis tool to
check for correctness.

https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html

Developers using Ubuntu Precise will want to install the gcc-4.6-plugin-dev
package

Example usage:

CC="/home/mcrusoe/src/gcc-plugin-python/gcc-python-plugin/gcc-with-cpychecker
--maxtrans=512" python setup.py build_ext 2>&1 | less

False positives abound: ignore errors about the C++ standard library. This tool
is primarily useful for reference count checking, error-handling checking, and
format string checking.

Errors to ignore: "Unhandled Python exception raised calling 'execute' method",
"AttributeError: 'NoneType' object has no attribute 'file'"

Warnings to address:

khmer/_khmermodule.cc:3109:1: note: this function is too complicated
for the reference-count checker to fully analyze: not all paths were
analyzed

Adjust --maxtrans and re-run.

khmer/_khmermodule.cc:2191:61: warning: Mismatching type in call to
Py_BuildValue with format code "i" [enabled by default]
 argument 2 ("D.68937") had type
 "long long unsigned int"
 but was expecting
 "int"
 for format code "i"

See below for a format string cheat sheet One also benefits by matching C type
with the function signature used later.

"I" for unsigned int
"K" for unsigned long long a.k.a khmer::HashIntoType.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Crazy ideas

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

 	The khmer developer documentation

Crazy ideas

	A JavaScript preprocessor to do things like count k-mers (HLL), and do
diginorm on data as uploaded to server.

Inspired by a paper that Titus reviewed for PLoS One; not yet published.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Roadmap to v2.0, v3.0, v4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

Roadmap to v2.0, v3.0, v4.0

Background

To make the khmer project easier to use and easier to build upon several
fundamental changes need to happen. This document outlines our plan to do so
while minimizing the impact of these changes on our existing users.

The discussion that lead to this document can be read at
https://github.com/ged-lab/khmer/issues/389

Remainder of v1.x series

Start of transition to a single entrypoint named oxli. This will be exempt
from the project's semantic versioning and will be advertised as experimental
and unstable.

Migration of Python script functionality to a Python module named oxli. As
the code moves over there will be no change to external script functionality or
their command line interfaces.

v2.x series

oxli command is now under semantic versioning. Scripts are still the
advertised and preferred entry point for users. Developers and workflow systems
can start to trial oxli but need not switch until 3.0. New functionality is
added to both the scripts and the oxli command.

v3.0 and project renaming

Project renamed to 'oxli'; all references to 'khmer' removed from the code and
documentation except for a single note in the docs. All scripts dropped as
their functionality has been moved to the oxli command. Websites that we
maintain that have 'khmer' in the URL will have redirects installed.

Refinement of the Python API continues, however it is not part of the semantic
versioning of the project.

v4.0

The semantic versioning now extends to the Python API.

Python API wishlist

Python 3.0 support

API for multiple container types and implementation of the same.

Cleanup of Python/C++ class hierarchy to cut down on boilerplate glue code.

Switch to new-style Python objects (see LabelHash & Hashbits)

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 License

 Navigation

 	
 index

 	
 previous |

 	khmer 1.4.1+0.g1e762a3.dirty documentation

License

Copyright (c) 2010-2014, Michigan State University. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the Michigan State University nor the names
of its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

 Index

 Navigation

 	
 index

 	khmer 1.4.1+0.g1e762a3.dirty documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T

Symbols

 	

 	
 --csv

 	

 	abundance-dist-single.py command line option

 	abundance-dist.py command line option

 	count-median.py command line option

 	count-overlap.py command line option

 	readstats.py command line option

 	
 --cutoff <int>, -C <int>

 	

 	filter-abund-single.py command line option

 	filter-abund.py command line option

 	trim-low-abund.py command line option

 	
 --force

 	

 	normalize-by-median.py command line option

 	trim-low-abund.py command line option

 	
 --force_single

 	

 	sample-reads-randomly.py command line option

 	
 --ignore-pairs

 	

 	trim-low-abund.py command line option

 	
 --keep-subsets

 	

 	do-partition.py command line option

 	merge-partition.py command line option

 	
 --ksize <int>, -k <int>

 	

 	abundance-dist-single.py command line option

 	annotate-partitions.py command line option

 	count-overlap.py command line option

 	do-partition.py command line option

 	filter-abund-single.py command line option

 	filter-stoptags.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	make-initial-stoptags.py command line option

 	merge-partition.py command line option

 	normalize-by-median.py command line option

 	trim-low-abund.py command line option

 	
 --max-size <int>, -X <int>

 	

 	extract-partitions.py command line option

 	
 --min-partition-size <int>, -m <int>

 	

 	extract-partitions.py command line option

 	
 --min-tablesize <float>, -x <float>

 	

 	abundance-dist-single.py command line option

 	count-overlap.py command line option

 	do-partition.py command line option

 	filter-abund-single.py command line option

 	find-knots.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	make-initial-stoptags.py command line option

 	normalize-by-median.py command line option

 	trim-low-abund.py command line option

 	
 --n_tables <int>, -N <int>

 	

 	abundance-dist-single.py command line option

 	count-overlap.py command line option

 	do-partition.py command line option

 	filter-abund-single.py command line option

 	find-knots.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	make-initial-stoptags.py command line option

 	normalize-by-median.py command line option

 	trim-low-abund.py command line option

 	
 --no-big-traverse

 	

 	do-partition.py command line option

 	partition-graph.py command line option

 	
 --no-build-tagset, -n

 	

 	load-graph.py command line option

 	
 --no-output-groups, -n

 	

 	extract-partitions.py command line option

 	
 --normalize-to <int>, -Z <int>

 	

 	filter-abund.py command line option

 	trim-low-abund.py command line option

 	
 --output-unassigned, -U

 	

 	extract-partitions.py command line option

 	
 --report-total-kmers, -t

 	

 	abundance-dist-single.py command line option

 	filter-abund-single.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	normalize-by-median.py command line option

 	
 --save-on-failure

 	

 	normalize-by-median.py command line option

 	
 --savetable <filename>

 	

 	abundance-dist-single.py command line option

 	filter-abund-single.py command line option

 	
 --stoptags <filename>, -S <filename>

 	

 	make-initial-stoptags.py command line option

 	partition-graph.py command line option

 	
 --subset-size <float>, -s <float>

 	

 	do-partition.py command line option

 	make-initial-stoptags.py command line option

 	partition-graph.py command line option

 	
 --summary-info <format>, -s <format>

 	

 	load-into-counting.py command line option

 	
 --tempdir <str>, -T <str>

 	

 	trim-low-abund.py command line option

 	
 --threads <int>, -T <int>

 	

 	abundance-dist-single.py command line option

 	do-partition.py command line option

 	filter-abund-single.py command line option

 	filter-abund.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	partition-graph.py command line option

 	
 --variable-coverage, -V

 	

 	filter-abund.py command line option

 	trim-low-abund.py command line option

 	
 --version

 	

 	abundance-dist-single.py command line option

 	abundance-dist.py command line option

 	annotate-partitions.py command line option

 	count-median.py command line option

 	count-overlap.py command line option

 	do-partition.py command line option

 	extract-paired-reads.py command line option

 	extract-partitions.py command line option

 	filter-abund-single.py command line option

 	filter-abund.py command line option

 	filter-stoptags.py command line option

 	find-knots.py command line option

 	interleave-reads.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	make-initial-stoptags.py command line option

 	merge-partition.py command line option

 	normalize-by-median.py command line option

 	partition-graph.py command line option

 	sample-reads-randomly.py command line option

 	split-paired-reads.py command line option

 	trim-low-abund.py command line option

 	
 --write-fp-rate, -w

 	

 	load-graph.py command line option

 	
 -1 <output_first>, --output-first <output_first>

 	

 	split-paired-reads.py command line option

 	

 	
 -2 <output_second>, --output-second <output_second>

 	

 	split-paired-reads.py command line option

 	
 -b, --no-bigcount

 	

 	abundance-dist-single.py command line option

 	load-into-counting.py command line option

 	
 -C <int>, --cutoff <int>

 	

 	normalize-by-median.py command line option

 	
 -d <int>, --dump-frequency <int>

 	

 	normalize-by-median.py command line option

 	
 -f, --fault-tolerant

 	

 	normalize-by-median.py command line option

 	
 -f, --force

 	

 	abundance-dist-single.py command line option

 	abundance-dist.py command line option

 	annotate-partitions.py command line option

 	count-median.py command line option

 	count-overlap.py command line option

 	do-partition.py command line option

 	extract-paired-reads.py command line option

 	extract-partitions.py command line option

 	filter-abund-single.py command line option

 	filter-abund.py command line option

 	filter-stoptags.py command line option

 	interleave-reads.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	make-initial-stoptags.py command line option

 	merge-partition.py command line option

 	partition-graph.py command line option

 	sample-reads-randomly.py command line option

 	split-paired-reads.py command line option

 	
 -h, --help

 	

 	abundance-dist-single.py command line option

 	abundance-dist.py command line option

 	annotate-partitions.py command line option

 	count-median.py command line option

 	count-overlap.py command line option

 	do-partition.py command line option

 	extract-long-sequences.py command line option

 	extract-paired-reads.py command line option

 	extract-partitions.py command line option

 	fastq-to-fasta.py command line option

 	filter-abund-single.py command line option

 	filter-abund.py command line option

 	filter-stoptags.py command line option

 	find-knots.py command line option

 	interleave-reads.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	make-initial-stoptags.py command line option

 	merge-partition.py command line option

 	normalize-by-median.py command line option

 	partition-graph.py command line option

 	readstats.py command line option

 	sample-reads-randomly.py command line option

 	split-paired-reads.py command line option

 	trim-low-abund.py command line option

 	
 -l <filename>, --loadtable <filename>

 	

 	normalize-by-median.py command line option

 	trim-low-abund.py command line option

 	
 -l <int>, --length <int>

 	

 	extract-long-sequences.py command line option

 	
 -M <int>, --max_reads <int>

 	

 	sample-reads-randomly.py command line option

 	
 -N <int>, --num_reads <int>

 	

 	sample-reads-randomly.py command line option

 	
 -n, --n_keep

 	

 	fastq-to-fasta.py command line option

 	
 -o <filename>, --out <filename>

 	

 	normalize-by-median.py command line option

 	trim-low-abund.py command line option

 	
 -o <filename>, --output <filename>

 	

 	fastq-to-fasta.py command line option

 	interleave-reads.py command line option

 	readstats.py command line option

 	
 -o <optional_output_filename>, --out <optional_output_filename>

 	

 	filter-abund.py command line option

 	
 -o <output_directory>, --output-dir <output_directory>

 	

 	split-paired-reads.py command line option

 	
 -o <output_file>, --output <output_file>

 	

 	sample-reads-randomly.py command line option

 	
 -o, --output

 	

 	extract-long-sequences.py command line option

 	
 -p, --force-paired

 	

 	split-paired-reads.py command line option

 	
 -p, --paired

 	

 	normalize-by-median.py command line option

 	
 -q, --quiet

 	

 	abundance-dist-single.py command line option

 	count-overlap.py command line option

 	do-partition.py command line option

 	filter-abund-single.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	make-initial-stoptags.py command line option

 	normalize-by-median.py command line option

 	trim-low-abund.py command line option

 	
 -R <filename>, --report <filename>

 	

 	normalize-by-median.py command line option

 	
 -R <int>, --random-seed <int>

 	

 	sample-reads-randomly.py command line option

 	
 -s <filename>, --savetable <filename>

 	

 	normalize-by-median.py command line option

 	trim-low-abund.py command line option

 	
 -S <int>, --samples <int>

 	

 	sample-reads-randomly.py command line option

 	
 -s, --squash

 	

 	abundance-dist-single.py command line option

 	abundance-dist.py command line option

 	
 -u <unpaired_reads_filename>, --unpaired-reads <unpaired_reads_filename>

 	

 	normalize-by-median.py command line option

 	
 -z, --no-zero

 	

 	abundance-dist-single.py command line option

 	abundance-dist.py command line option

A

 	

 	
 abundance-dist-single.py command line option

 	

 	--csv

 	--ksize <int>, -k <int>

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--report-total-kmers, -t

 	--savetable <filename>

 	--threads <int>, -T <int>

 	--version

 	-b, --no-bigcount

 	-f, --force

 	-h, --help

 	-q, --quiet

 	-s, --squash

 	-z, --no-zero

 	input_sequence_filename

 	output_histogram_filename

 	
 abundance-dist.py command line option

 	

 	--csv

 	--version

 	-f, --force

 	-h, --help

 	-s, --squash

 	-z, --no-zero

 	input_counting_table_filename

 	input_sequence_filename

 	output_histogram_filename

 	

 	
 annotate-partitions.py command line option

 	

 	--ksize <int>, -k <int>

 	--version

 	-f, --force

 	-h, --help

 	graphbase

 	input_sequence_filename

B

 	

 	
 basename

 	

 	partition-graph.py command line option

C

 	

 	
 count-median.py command line option

 	

 	--csv

 	--version

 	-f, --force

 	-h, --help

 	input_counting_table_filename

 	input_sequence_filename

 	output_summary_filename

 	

 	
 count-overlap.py command line option

 	

 	--csv

 	--ksize <int>, -k <int>

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--version

 	-f, --force

 	-h, --help

 	-q, --quiet

 	input_presence_table_filename

 	input_sequence_filename

 	output_report_filename

D

 	

 	
 do-partition.py command line option

 	

 	--keep-subsets

 	--ksize <int>, -k <int>

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--no-big-traverse

 	--subset-size <float>, -s <float>

 	--threads <int>, -T <int>

 	--version

 	-f, --force

 	-h, --help

 	-q, --quiet

 	graphbase

 	input_sequence_filename

E

 	

 	
 extract-long-sequences.py command line option

 	

 	-h, --help

 	-l <int>, --length <int>

 	-o, --output

 	input_filenames

 	
 extract-paired-reads.py command line option

 	

 	--version

 	-f, --force

 	-h, --help

 	infile

 	

 	
 extract-partitions.py command line option

 	

 	--max-size <int>, -X <int>

 	--min-partition-size <int>, -m <int>

 	--no-output-groups, -n

 	--output-unassigned, -U

 	--version

 	-f, --force

 	-h, --help

 	input_partition_filename

 	output_filename_prefix

F

 	

 	
 fastq-to-fasta.py command line option

 	

 	-h, --help

 	-n, --n_keep

 	-o <filename>, --output <filename>

 	input_sequence

 	
 filenames

 	

 	readstats.py command line option

 	sample-reads-randomly.py command line option

 	
 filter-abund-single.py command line option

 	

 	--cutoff <int>, -C <int>

 	--ksize <int>, -k <int>

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--report-total-kmers, -t

 	--savetable <filename>

 	--threads <int>, -T <int>

 	--version

 	-f, --force

 	-h, --help

 	-q, --quiet

 	input_sequence_filename

 	

 	
 filter-abund.py command line option

 	

 	--cutoff <int>, -C <int>

 	--normalize-to <int>, -Z <int>

 	--threads <int>, -T <int>

 	--variable-coverage, -V

 	--version

 	-f, --force

 	-h, --help

 	-o <optional_output_filename>, --out <optional_output_filename>

 	input_counting_table_filename

 	input_sequence_filename

 	
 filter-stoptags.py command line option

 	

 	--ksize <int>, -k <int>

 	--version

 	-f, --force

 	-h, --help

 	input_sequence_filename

 	input_stoptags_filename

 	
 find-knots.py command line option

 	

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--version

 	-h, --help

 	graphbase

G

 	

 	
 graphbase

 	

 	annotate-partitions.py command line option

 	do-partition.py command line option

 	find-knots.py command line option

 	make-initial-stoptags.py command line option

 	merge-partition.py command line option

I

 	

 	
 infile

 	

 	extract-paired-reads.py command line option

 	split-paired-reads.py command line option

 	
 infiles

 	

 	interleave-reads.py command line option

 	
 input_counting_table_filename

 	

 	abundance-dist.py command line option

 	count-median.py command line option

 	filter-abund.py command line option

 	
 input_filenames

 	

 	extract-long-sequences.py command line option

 	trim-low-abund.py command line option

 	
 input_partition_filename

 	

 	extract-partitions.py command line option

 	

 	
 input_presence_table_filename

 	

 	count-overlap.py command line option

 	
 input_sequence

 	

 	fastq-to-fasta.py command line option

 	
 input_sequence_filename

 	

 	abundance-dist-single.py command line option

 	abundance-dist.py command line option

 	annotate-partitions.py command line option

 	count-median.py command line option

 	count-overlap.py command line option

 	do-partition.py command line option

 	filter-abund-single.py command line option

 	filter-abund.py command line option

 	filter-stoptags.py command line option

 	load-graph.py command line option

 	load-into-counting.py command line option

 	normalize-by-median.py command line option

 	
 input_stoptags_filename

 	

 	filter-stoptags.py command line option

 	
 interleave-reads.py command line option

 	

 	--version

 	-f, --force

 	-h, --help

 	-o <filename>, --output <filename>

 	infiles

L

 	

 	
 load-graph.py command line option

 	

 	--ksize <int>, -k <int>

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--no-build-tagset, -n

 	--report-total-kmers, -t

 	--threads <int>, -T <int>

 	--version

 	--write-fp-rate, -w

 	-f, --force

 	-h, --help

 	-q, --quiet

 	input_sequence_filename

 	output_presence_table_filename

 	

 	
 load-into-counting.py command line option

 	

 	--ksize <int>, -k <int>

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--report-total-kmers, -t

 	--summary-info <format>, -s <format>

 	--threads <int>, -T <int>

 	--version

 	-b, --no-bigcount

 	-f, --force

 	-h, --help

 	-q, --quiet

 	input_sequence_filename

 	output_countingtable_filename

M

 	

 	
 make-initial-stoptags.py command line option

 	

 	--ksize <int>, -k <int>

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--stoptags <filename>, -S <filename>

 	--subset-size <float>, -s <float>

 	--version

 	-f, --force

 	-h, --help

 	-q, --quiet

 	graphbase

 	

 	
 merge-partition.py command line option

 	

 	--keep-subsets

 	--ksize <int>, -k <int>

 	--version

 	-f, --force

 	-h, --help

 	graphbase

N

 	

 	
 normalize-by-median.py command line option

 	

 	--force

 	--ksize <int>, -k <int>

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--report-total-kmers, -t

 	--save-on-failure

 	--version

 	-C <int>, --cutoff <int>

 	-R <filename>, --report <filename>

 	-d <int>, --dump-frequency <int>

 	-f, --fault-tolerant

 	-h, --help

 	-l <filename>, --loadtable <filename>

 	-o <filename>, --out <filename>

 	-p, --paired

 	-q, --quiet

 	-s <filename>, --savetable <filename>

 	-u <unpaired_reads_filename>, --unpaired-reads <unpaired_reads_filename>

 	input_sequence_filename

O

 	

 	
 output_countingtable_filename

 	

 	load-into-counting.py command line option

 	
 output_filename_prefix

 	

 	extract-partitions.py command line option

 	
 output_histogram_filename

 	

 	abundance-dist-single.py command line option

 	abundance-dist.py command line option

 	

 	
 output_presence_table_filename

 	

 	load-graph.py command line option

 	
 output_report_filename

 	

 	count-overlap.py command line option

 	
 output_summary_filename

 	

 	count-median.py command line option

P

 	

 	
 partition-graph.py command line option

 	

 	--no-big-traverse

 	--stoptags <filename>, -S <filename>

 	--subset-size <float>, -s <float>

 	--threads <int>, -T <int>

 	--version

 	-f, --force

 	-h, --help

 	basename

R

 	

 	
 readstats.py command line option

 	

 	--csv

 	-h, --help

 	-o <filename>, --output <filename>

 	filenames

S

 	

 	
 sample-reads-randomly.py command line option

 	

 	--force_single

 	--version

 	-M <int>, --max_reads <int>

 	-N <int>, --num_reads <int>

 	-R <int>, --random-seed <int>

 	-S <int>, --samples <int>

 	-f, --force

 	-h, --help

 	-o <output_file>, --output <output_file>

 	filenames

 	

 	
 split-paired-reads.py command line option

 	

 	--version

 	-1 <output_first>, --output-first <output_first>

 	-2 <output_second>, --output-second <output_second>

 	-f, --force

 	-h, --help

 	-o <output_directory>, --output-dir <output_directory>

 	-p, --force-paired

 	infile

T

 	

 	
 trim-low-abund.py command line option

 	

 	--cutoff <int>, -C <int>

 	--force

 	--ignore-pairs

 	--ksize <int>, -k <int>

 	--min-tablesize <float>, -x <float>

 	--n_tables <int>, -N <int>

 	--normalize-to <int>, -Z <int>

 	--tempdir <str>, -T <str>

 	--variable-coverage, -V

 	--version

 	-h, --help

 	-l <filename>, --loadtable <filename>

 	-o <filename>, --out <filename>

 	-q, --quiet

 	-s <filename>, --savetable <filename>

 	input_filenames

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/file.png

search.html

 Navigation

 		
 index

 		khmer 1.4.1+0.g1e762a3.dirty documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

dev/hackathon.html

 Navigation

 		
 index

 		khmer 1.4.1+0.g1e762a3.dirty documentation »

Hackathon information (July 2014)

This document is for contributors to the July 2014 Hackathon (see the
blog post [http://ivory.idyll.org/blog/2014-khmer-hackathon.html]).

Please track khmer issue #446 [https://github.com/ged-lab/khmer/issues/446] for up-to-the-minute
information. You can subscribe to this issue (lower right on issue page)
to get automatic e-mail updates.

Start here! Getting started with khmer development

Introducing...

khmer is a piece of scientific software that does cool stuff in biology.
(That's really all you need to know for the Hackathon, honestly; but you
can read more about khmer here [http://figshare.com/articles/The_khmer_software_package_enabling_efficient_sequence_analysis/979190] if you like.)

The important bit about khmer is that we develop it openly,
at http://github.com/ged-lab/khmer; we use reasonably OK software development
practices; and we're interested in spreading the gospel, so to speak.

So! For this Hackathon, we're providing a "mentored software
development experience". We'll walk you through the "GitHub Flow"
process (link) [http://scottchacon.com/2011/08/31/github-flow.html], which will
involve making your own copy of khmer, getting it compiled and running
the tests, claiming an issue, requesting a merge, watching our
continuous integration engine run your changes, and going through code
review. What fun!

To get started, go to Getting started with khmer development!

You can contact us directly at khmer-project@idyll.org, but if you're
experience trouble of any kind, please feel to create an issue [https://github.com/ged-lab/khmer/issues?direction=desc&sort=created&state=open]
where we can help you out. Also keep an eye on issue #446 [https://github.com/ged-lab/khmer/issues/446] where we're updating
Hackathon information more generally.

Problems, questions, and solutions

		I don't have access to a UNIX machine that can compile khmer. What can
I do?

Contact us at khmer-project@idyll.org and we'll give you an account
for the duration. You'll need to have an SSH client, note.

		There's a bug in this documentation! But I can fix it...

Oh noes! Fixes are welcome -- these docs are in branch
'docs/hackathon' on http://github.com/ged-lab/khmer/, so please
send PRs there. Or if you haven't worked through the process yet,
please add an issue [https://github.com/ged-lab/khmer/issues?direction=desc&sort=created&state=open] and we'll be on it.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Sri