
khmer Documentation
Release 1.1

2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy, Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown

December 08, 2014

Contents

1 Introduction to khmer 3
1.1 Introduction . 3
1.2 Using khmer . 3
1.3 Practical considerations . 4
1.4 Copyright and license . 4

2 Installing and running khmer 5
2.1 Build requirements . 5
2.2 Latest stable release . 6
2.3 Latest development branch . 6

3 A few examples 7
3.1 STAMPS data set . 7

4 An assembly handbook for khmer - rough draft 9
4.1 Authors . 9
4.2 Introduction . 9
4.3 Asking for help . 9
4.4 Preparing your sequences . 10
4.5 Picking k-mer table sizes and k parameters . 10
4.6 Genome assembly, including MDA samples and highly polymorphic genomes 10
4.7 mRNAseq assembly . 10
4.8 Metagenome assembly . 11
4.9 Metatranscriptome assembly . 11
4.10 Preprocessing Illumina for other applications . 11
4.11 Quantifying mRNAseq or metagenomes assembled with digital normalization 11
4.12 Philosophy of digital normalization . 12
4.13 Iterative and independent normalization . 12
4.14 Validating and comparing assemblies . 12

5 khmer’s command-line interface 13
5.1 k-mer counting and abundance filtering . 13
5.2 Partitioning . 18
5.3 Digital normalization . 24
5.4 Read handling: interleaving, splitting, etc. 25

6 Blog posts and additional documentation 29
6.1 Hashtable and filtering . 29
6.2 Illumina read abundance profiles . 29

i

7 Choosing table sizes for khmer 31
7.1 The really short version . 31
7.2 The short version . 31
7.3 The real full version . 32

8 Partitioning large data sets (50m+ reads) 35
8.1 Basic partitioning . 35
8.2 Artifact removal . 35
8.3 Running on an example data set . 36
8.4 Post-partitioning assembly . 37

9 Architecture and Design 39
9.1 Overview . 39
9.2 Namespace . 39
9.3 Configuration Objects . 40
9.4 Trace Loggers . 40
9.5 Performance Metrics . 41
9.6 Input Data Pumps . 42
9.7 Thread Identity Maps . 44
9.8 Cache Managers . 44
9.9 Reads and Read Pairs . 45
9.10 Read Parsers . 46
9.11 k-mer Counters and Bloom Filters . 47
9.12 Python Wrapper . 48

10 Miscellaneous implementation details 51

11 Development miscellany 53
11.1 Third-party use . 53
11.2 Build framework . 53
11.3 Coding standards . 53
11.4 Code Review . 54
11.5 Checklist . 54
11.6 git and github strategies . 54
11.7 Testing . 54
11.8 Code coverage . 54
11.9 Pipelines . 55
11.10 Command line scripts . 55
11.11 Python / C integration . 56

12 Deploying the khmer project tools on Galaxy 57
12.1 Install the tools & tool description . 57
12.2 Single Output Usage . 57

13 Known Issues 59

14 Releasing a new version of khmer 61
14.1 How to make a khmer release candidate . 61
14.2 How to make a final release . 63
14.3 BaTLab testing . 63
14.4 Setuptools Bootstrap . 64
14.5 Versioning Explanation . 64

15 Crazy ideas 65

ii

16 Contributors and Acknowledgements 67

17 An incomplete bibliography of papers using khmer 69
17.1 Digital normalization . 69

18 License 71

19 Indices and tables 73

Python Module Index 75

iii

iv

khmer Documentation, Release 1.1

Authors Michael R. Crusoe, Greg Edvenson, Jordan Fish, Adina Howe, Luiz Irber, Eric McDonald,
Joshua Nahum, Kaben Nanlohy, Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott,
Ramakrishnan Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown

Contact khmer-project@idyll.org

License BSD

khmer is a library and suite of command line tools for working with DNA sequence. It is primarily aimed at short-read
sequencing data such as that produced by the Illumina platform. khmer takes a k-mer-centric approach to sequence
analysis, hence the name.

There are two mailing lists dedicated to khmer, an announcements-only list and a discussion list. To search their
archives and sign-up for them, please visit the following URLs:

• Discussion: http://lists.idyll.org/listinfo/khmer

• Announcements: http://lists.idyll.org/listinfo/khmer-announce

The archives for the khmer list are available at: http://lists.idyll.org/pipermail/khmer/

khmer development has largely been supported by AFRI Competitive Grant no. 2010-65205-20361 from the USDA
NIFA, and is now funded by the National Human Genome Research Institute of the National Institutes of Health under
Award Number R01HG007513, both to C. Titus Brown.

Contents:

Contents 1

mailto:khmer-project@idyll.org
http://lists.idyll.org/listinfo/khmer
http://lists.idyll.org/listinfo/khmer-announce
http://lists.idyll.org/pipermail/khmer/
http://ged.msu.edu/downloads/2009-usda-vertex.pdf
http://ged.msu.edu/downloads/2012-bigdata-nsf.pdf

khmer Documentation, Release 1.1

2 Contents

CHAPTER 1

Introduction to khmer

1.1 Introduction

khmer is a library and toolkit for doing k-mer-based dataset analysis and transformations. Our focus in developing it
has been on scaling assembly of metagenomes and mRNA.

khmer can be used for a number of transformations, include inexact transformations (abundance filtering and error
trimming) and exact transformations (graph-size filtering, to throw away disconnected reads; and partitioning, to
split reads into disjoint sets). Of these, only partitioning is not constant memory. In all cases, the memory required for
assembly with Velvet or another de Bruijn graph assembler will be more than the memory required to use our software.
Our software will not increase the memory required for Velvet, either, although we may not be able to decrease the
memory required for assembly for every data set.

Most of khmer relies on an underlying probabilistic data structure known as a Bloom filter (also see MinCount Sketch),
which is essentially a set of hash tables, each of different size, with no collision detection. These hash tables are used
to store the presence of specific k-mers and/or their count. The lack of collision detection means that the Bloom filter
may report a k-mer as being “present” when it is not, in fact, in the data set; however, it will never incorrectly report a
k-mer as being absent when it is present. This one-sided error makes the Bloom filter very useful for certain kinds of
operations.

khmer is also independent of K, and currently works for K <= 32. We will be integrating code for up to K=64 soon.

khmer is implemented in C++ with a Python wrapper, which is what all of the scripts use.

1.2 Using khmer

khmer comes “out of the box” with a number of scripts that make it immediately useful for a few different operations,
including:

• normalizing read coverage (“digital normalization”)

• dividing reads into disjoint sets that do not connect (“partitioning”)

• eliminating reads that will not be used by a de Bruijn graph assembler;

• removing reads with low- or high-abundance k-mers;

• trimming reads of certain kinds of sequencing errors;

• counting k-mers and estimating data set coverage based on k-mer counts;

• running Velvet and calculating assembly statistics;

• optimizing assemblies on various parameters;

3

http://en.wikipedia.org/wiki/Bloom_filter
http://www.eecs.harvard.edu/~michaelm/CS222/countmin.pdf

khmer Documentation, Release 1.1

• converting FASTA to FASTQ;

and a few other random functions.

1.3 Practical considerations

The most important thing to think about when using khmer is whether or not the transformation or filter you’re applying
is appropriate for the data you’re trying to assemble. Two of the most powerful operations available in khmer, graph-
size filtering and graph partitioning, only make sense for assembly datasets with many theoretically unconnected
components. This is typical of metagenomic data sets.

The second most important consideration is memory usage. The effectiveness of all of the Bloom filter-based functions
(which is everything interesting in khmer!) depends critically on having enough memory to do a good job. See
Choosing table sizes for khmer for more information.

1.4 Copyright and license

Portions of khmer are Copyright California Institute of Technology, where the exact counting code was first developed;
the remainder is Copyright Michigan State University. The code is freely available for use and re-use under the BSD
License.

4 Chapter 1. Introduction to khmer

CHAPTER 2

Installing and running khmer

You’ll need Python 2.7+ and internet access.

The khmer project currently works with Python 2.6 but we target Python 2.7+.

2.1 Build requirements

2.1.1 OS X

If you just want to use the khmer project tools and not develop them then skip to step 4.

1. Install Xcode from the Mac App Store (requires root).

2. Register as an Apple Developer.

3. Install the Xcode command-line tools: Xcode -> preferences -> Downloads -> Command Line Tools (requires
root).

4. From a terminal download the virtualenv package and create a virtual environment with it. You’ll need the URL
of the latest virtualenv release.

curl -O https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.x.y.tar.gz
tar xzf virtualenv*
cd virtualenv-*; python2.7 virtualenv.py ../khmerEnv; cd ..
source khmerEnv/bin/activate

2.1.2 Linux

1. Install the python development environment, virtualenv, pip, and gcc.

• On recent Debian and Ubuntu this can be done with:

sudo apt-get install python2.7-dev python-virtualenv python-pip gcc

• For RHEL6:

sudo yum install -y python-devel python-pip git gcc gcc-c++ make
sudo pip install virtualenv

2. Create a virtualenv and activate it:

5

https://developer.apple.com/xcode/
https://developer.apple.com/register
https://pypi.python.org/packages/source/v/virtualenv/

khmer Documentation, Release 1.1

cd a/writeable/directory/
python2.7 -m virtualenv khmerEnv
source khmerEnv/bin/activate

Linux users without root access can try step 4 from the OS X instructions above.

2.2 Latest stable release

1. Use pip to download, build, and install khmer and its dependencies:

pip2 install khmer

2. The scripts are now in the env/bin directory and ready for your use. You can directly use them by name, see
khmer’s command-line interface.

3. When returning to khmer after installing it you will need to reactivate the virtualenv first:

source khmerEnv/bin/activate

2.3 Latest development branch

Repeat the above but modify the pip install line:

pip2 install git+https://github.com/ged-lab/khmer.git@master#egg=khmer

You can change master in the above command to the name of another branch.

2.3.1 Run the tests

If you’re running a version of pip less than 1.4 and you want to run the tests then you should upgrade pip:

pip2 install --user --upgrade pip

Repeat the appropriate installation procedure from above but add “–no-clean” to the pip invocation.

The source will be in the khmerEnv/build/khmer directory. Run make test there.

6 Chapter 2. Installing and running khmer

CHAPTER 3

A few examples

See the ‘examples’ subdirectory for complete examples.

3.1 STAMPS data set

The ‘stamps’ data set is a fake metagenome-like data set containing two species, mixed at a 10:1 ratio. The source
genomes are in ‘data/stamps-genomes.fa’. The reads file is in ‘data/stamps-reads.fa.gz’, and consists of 100-base reads
with a 1% error rate.

The example shows how to construct k-mer abundance histograms, as well as the effect of digital normalization and
partitioning on the k-mer abundance distribution.

See the script for running everything and the IPython Notebook.

For an overall discussion and some slides to explain what’s going on, visit the Web site for a 2013 HMP metagenome
assembly webinar that Titus Brown gave.

7

https://github.com/ged-lab/khmer/blob/master/examples/stamps/do.sh
http://nbviewer.ipython.org/urls/raw.github.com/ged-lab/khmer/master/examples/stamps%2520k-mer%2520distributions.ipynb
http://ged.msu.edu/angus/2013-hmp-assembly-webinar/exploring-stamps-data.html
http://ged.msu.edu/angus/2013-hmp-assembly-webinar/exploring-stamps-data.html

khmer Documentation, Release 1.1

8 Chapter 3. A few examples

CHAPTER 4

An assembly handbook for khmer - rough draft

date 2012-11-2

An increasing number of people are asking about using our assembly approaches for things that we haven’t yet written
(or posted) papers about. Moreover, our assembly strategies themselves are also under constant evolution as we do
more research and find ever-wider applicability of our approaches.

Note, this is an exact copy of Titus’ blog post, here – go check the bottom of that for comments.

4.1 Authors

This handbook distills the cumulative expertise of Adina Howe, Titus Brown, Erich Schwarz, Jason Pell, Camille
Scott, Elijah Lowe, Kanchan Pavangadkar, Likit Preeyanon, and others.

4.2 Introduction

khmer is a general framework for low-memory k-mer counting, filtering, and advanced trickery.

The latest source is always available here.

khmer is really focused on short read data, and, more specifically, Illumina, because that’s where we have a too-much-
data problem. However, a lot of the prescriptions below can be adapted to longer read technologies such as 454 and
Ion Torrent without much effort.

Don’t try to use our k-mer approaches with PacBio – the error rate is too high.

There are currently two papers available on khmer: the partitioning paper and the digital normalization paper.

There are many blog posts about this stuff on Titus Brown’s blog. We will try to link them in where appropriate.

4.3 Asking for help

There’s some documentation here:

https://khmer.readthedocs.org/en/latest/

There’s also a khmer mailing list at lists.idyll.org that you can use to get help with khmer. To sign up, just go to the
khmer lists page and subscribe.

9

http://ivory.idyll.org/blog/an-assembly-handbook-for-khmer.html
http://khmer.readthedocs.org/en/latest/
https://github.com/ged-lab/khmer
http://pnas.org/content/early/2012/07/25/1121464109.abstract
http://arxiv.org/abs/1203.4802
http://ivory.idyll.org/blog/
https://khmer.readthedocs.org/en/latest/
http://lists.idyll.org/listinfo/khmer
http://lists.idyll.org/listinfo/khmer

khmer Documentation, Release 1.1

4.4 Preparing your sequences

Do all the quality filtering, trimming, etc. that you think you should do.

Most of the khmer tools currently work “out of the box” on interleaved paired-end data. Ask on the list if you’re not
sure.

All of our scripts will take in .fq or .fastq files as FASTQ, and all other files as FASTA. gzip files are always accepted.
Let us know if not; that’s a bug!

Most scripts output FASTA, and some mangle headers. Sorry. We’re working on outputting FASTQ for FASTQ input,
and removing any header mangling.

4.5 Picking k-mer table sizes and k parameters

For k-mer table sizes, read Choosing table sizes for khmer

For k-mer sizes, we recommend k=20 for digital normalization and k=32 for partitioning; then assemble with a variety
of k parameters.

4.6 Genome assembly, including MDA samples and highly polymor-
phic genomes

1. Apply digital normalization as follows.

Broadly, normalize each insert library separately, in the following way:

For high-coverage libraries (> ~50x), do three-pass digital normalization: run normalize-by-median to C=20 and then
run filter-abund with C=1. Now split out the remaining paired-end/interleaved and single-end reads using strip-and-
split-for-assembly, and normalize-by-median the paired-end and single-end files to C=5 (in that order).

For low-coverage libraries (< 50x) do single-pass digital normalization: run normalize-by-median to C=10.

2. Extract any remaining paired-end reads and lump remaining orphan reads into singletons using strip-and-split-for-
assembly

3. Then assemble as normal, with appropriate insert size specs etc. for the paired end reads.

You can read about this process in the digital normalization paper.

4.7 mRNAseq assembly

1. Apply single-pass digital normalization.

Run normalize-by-median to C=20.

2. Extract any remaining paired-end reads and lump remaining orphan reads into singletons using strip-and-split-for-
assembly

3. Then assemble as normal, with appropriate insert size specs etc. for the paired end reads.

You can read about this process in the digital normalization paper.

10 Chapter 4. An assembly handbook for khmer - rough draft

http://arxiv.org/abs/1203.4802
http://arxiv.org/abs/1203.4802

khmer Documentation, Release 1.1

4.8 Metagenome assembly

1. Apply single-pass digital normalization.

Run normalize-by-median to C=20 (we’ve also found C=10 works fine).

2. Run filter-below-abund with C=50 (if you diginormed to C=10) or C=100 (if you diginormed to C=20);

3. Partition reads with load-graph, etc. etc.

4. Assemble groups as normal, extracting paired-end reads and lumping remaining orphan reads into singletons using
strip-and-split-for-assembly.

(We actually use Velvet at this point, but there should be no harm in using a metagenome assembler such as MetaVelvet
or MetaIDBA or SOAPdenovo.)

Read more about this in the partitioning paper. We have some upcoming papers on partitioning and metagenome
assembly, too; we’ll link those in when we can.

4.9 Metatranscriptome assembly

(Not tested by us!)

1. Apply single-pass digital normalization.

Run normalize-by-median to C=20.

2. Extract any remaining paired-end reads and lump remaining orphan reads into singletons using strip-and-split-for-
assembly

3. Then assemble with a genome or metagenome assembler, not an mRNAseq assembler. Use appropriate insert size
specs etc. for the paired end reads.

4.10 Preprocessing Illumina for other applications

(Not tested by us!)

Others have told us that you can apply digital normalization to Illumina data prior to using Illumina for RNA scaffold-
ing or error correcting PacBio reads.

Our suggestion for this, based on no evidence whatsoever, is to diginorm the Illumina data to C=20.

4.11 Quantifying mRNAseq or metagenomes assembled with digital
normalization

For now, khmer only deals with assembly! So: assemble. Then, go back to your original, unnormalized reads, and
map those to your assembly with e.g. bowtie. Then count as you normally would :).

4.8. Metagenome assembly 11

http://pnas.org/content/early/2012/07/25/1121464109.abstract
http://www.ncbi.nlm.nih.gov/pubmed?term=20980554
http://www.ncbi.nlm.nih.gov/pubmed?term=20980554
http://www.ncbi.nlm.nih.gov/pubmed?term=22750884

khmer Documentation, Release 1.1

4.12 Philosophy of digital normalization

The basic philosophy of digital normalization is “load your most valuable reads first.” Diginorm gets rid of redundancy
iteratively, so you are more likely to retain the first reads fed in; this means you should load in paired end reads, or
longer reads, first.

4.13 Iterative and independent normalization

You can use --loadtable and --savetable to do iterative normalizations on multiple files in multiple steps.
For example, break

normalize-by-median.py [...] file1.fa file2.fa file3.fa

into multiple steps like so:

normalize-by-median.py [...] --savetable file1.kh file1.fa
normalize-by-median.py [...] --loadtable file1.kh --savetable file2.kh file2.fa
normalize-by-median.py [...] --loadtable file2.kh --savetable file3.kh file3.fa

The results should be identical!

If you want to independently normalize multiple files for speed reasons, go ahead. Just remember to do a combined
normalization at the end. For example, instead of

normalize-by-median.py [...] file1.fa file2.fa file3.fa

you could do

normalize-by-median.py [...] file1.fa
normalize-by-median.py [...] file2.fa
normalize-by-median.py [...] file3.fa

and then do a final

normalize-by-median.py [...] file1.fa.keep file2.fa.keep file3.fa.keep

The results will not be identical, but should not differ significantly. The multipass approach will take more total time
but may end up being faster walltime because you can execute the independent normalizations on multiple computers.

For a cleverer approach that we will someday implement, read the Beachcomber’s Dilemma.

4.14 Validating and comparing assemblies

More here soon :).

12 Chapter 4. An assembly handbook for khmer - rough draft

http://ivory.idyll.org/blog/beachcombers-dilemma.html

CHAPTER 5

khmer’s command-line interface

The simplest way to use khmer’s functionality is through the command line scripts, located in the scripts/ directory of
the khmer distribution. Below is our documentation for these scripts. Note that all scripts can be given -h which will
print out a list of arguments taken by that script.

Many scripts take -x and -N parameters, which drive khmer’s memory usage. These parameters depend on details of
your data set; for more information on how to choose them, see Choosing table sizes for khmer.

You can also override the default values of --ksize/-k, --n_tables/-N, and --min-tablesize/-x with the
environment variables KHMER_KSIZE, KHMER_N_TABLES, and KHMER_MIN_TABLESIZE respectively.

1. k-mer counting and abundance filtering

2. Partitioning

3. Digital normalization

4. Read handling: interleaving, splitting, etc.

Note: Almost all scripts take in either FASTA and FASTQ format, and output the same. Some scripts may only
recognize FASTQ if the file ending is ‘.fq’ or ‘.fastq’, at least for now.

Files ending with ‘.gz’ will be treated as gzipped files, and files ending with ‘.bz2’ will be treated as bzip2’d files.

5.1 k-mer counting and abundance filtering

5.1.1 load-into-counting.py

Build a k-mer counting table from the given sequences.

usage: load-into-counting.py [-h] [–version] [-q] [–ksize KSIZE] [–n_tables N_TABLES] [–min-tablesize
MIN_TABLESIZE] [–threads N_THREADS] [-b] [–report-total-kmers] output_countingtable_filename in-
put_sequence_filename [input_sequence_filename ...]

output_countingtable_filename
The name of the file to write the k-mer counting table to.

input_sequence_filename
The names of one or more FAST[AQ] input sequence files.

-h, --help
show this help message and exit

13

khmer Documentation, Release 1.1

--version
show program’s version number and exit

-q, --quiet

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on tablesize to use

--threads <int>, -T <int>
Number of simultaneous threads to execute

-b, --no-bigcount
Do not count k-mers past 255

--report-total-kmers, -t
Prints the total number of k-mers to stderr

Note: with -b the output will be the exact size of the k-mer counting table and this script will use a constant amount
of memory. In exchange k-mer counts will stop at 255. The memory usage of this script with -b will be about 1.15x
the product of the -x and -N numbers.

Example:

load-into-counting.py -k 20 -x 5e7 out.kh data/100k-filtered.fa

Multiple threads can be used to accelerate the process, if you have extra cores to spare.

Example:

load_into_counting.py -k 20 -x 5e7 -T 4 out.kh data/100k-filtered.fa

5.1.2 abundance-dist.py

Calculate abundance distribution of the k-mers in the sequence file using a pre-made k-mer counting table.

usage: abundance-dist.py [-h] [-z] [-s] [–version] input_counting_table_filename input_sequence_filename out-
put_histogram_filename

input_counting_table_filename
The name of the input k-mer counting table file.

input_sequence_filename
The name of the input FAST[AQ] sequence file.

output_histogram_filename
The columns are: (1) k-mer abundance, (2) k-mer count, (3) cumulative count, (4) fraction of total distinct
k-mers.

-h, --help
show this help message and exit

-z, --no-zero
Do not output 0-count bins

-s, --squash
Overwrite output file if it exists

14 Chapter 5. khmer’s command-line interface

khmer Documentation, Release 1.1

--version
show program’s version number and exit

5.1.3 abundance-dist-single.py

Calculate the abundance distribution of k-mers from a single sequence file.

usage: abundance-dist-single.py [-h] [–version] [-q] [–ksize KSIZE] [–n_tables N_TABLES] [–min-tablesize
MIN_TABLESIZE] [–threads THREADS] [-z] [-b] [-s] [–savetable filename] [–report-total-kmers] in-
put_sequence_filename output_histogram_filename

input_sequence_filename
The name of the input FAST[AQ] sequence file.

output_histogram_filename
The name of the output histogram file. The columns are: (1) k-mer abundance, (2) k-mer count, (3) cumulative
count, (4) fraction of total distinct k-mers.

-h, --help
show this help message and exit

--version
show program’s version number and exit

-q, --quiet

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on tablesize to use

--threads <int>, -T <int>
Number of simultaneous threads to execute

-z, --no-zero
Do not output 0-count bins

-b, --no-bigcount
Do not count k-mers past 255

-s, --squash
Overwrite output file if it exists

--savetable <filename>
Save the k-mer counting table to the specified filename.

--report-total-kmers, -t
Prints the total number of k-mers to stderr

Note that with -b this script is constant memory; in exchange, k-mer counts will stop at 255. The memory usage of
this script with -b will be about 1.15x the product of the -x and -N numbers.

To count k-mers in multiple files use load_into_counting.py and abundance_dist.py.

5.1. k-mer counting and abundance filtering 15

khmer Documentation, Release 1.1

5.1.4 filter-abund.py

Trim sequences at a minimum k-mer abundance.

usage: filter-abund.py [-h] [–version] [-q] [–ksize KSIZE] [–n_tables N_TABLES] [–min-tablesize
MIN_TABLESIZE] [–threads THREADS] [–cutoff CUTOFF] [–variable-coverage] [–normalize-to NOR-
MALIZE_TO] [-o optional_output_filename] input_presence_table_filename input_sequence_filename [in-
put_sequence_filename ...]

input_presence_table_filename
The input k-mer presence table filename

input_sequence_filename
Input FAST[AQ] sequence filename

-h, --help
show this help message and exit

--version
show program’s version number and exit

-q, --quiet

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on tablesize to use

--threads <int>, -T <int>
Number of simultaneous threads to execute

--cutoff <int>, -C <int>
Trim at k-mers below this abundance.

--variable-coverage, -V
Only trim low-abundance k-mers from sequences that have high coverage.

--normalize-to <int>, -Z <int>
Base the variable-coverage cutoff on this median k-mer abundance.

-o <optional_output_filename>, --out <optional_output_filename>
Output the trimmed sequences into a single file with the given filename instead of creating a new file for each
input file.

Trimmed sequences will be placed in ${input_sequence_filename}.abundfilt for each input sequence file. If the input
sequences are from RNAseq or metagenome sequencing then --variable-coverage should be used.

Example:

load-into-counting.py -k 20 -x 5e7 table.kh data/100k-filtered.fa
filter-abund.py -C 2 table.kh data/100k-filtered.fa

5.1.5 filter-abund-single.py

Trims sequences at a minimum k-mer abundance (in memory version).

16 Chapter 5. khmer’s command-line interface

khmer Documentation, Release 1.1

usage: filter-abund-single.py [-h] [–version] [-q] [–ksize KSIZE] [–n_tables N_TABLES] [–min-tablesize
MIN_TABLESIZE] [–threads THREADS] [–cutoff CUTOFF] [–savetable filename] [–report-total-kmers] in-
put_sequence_filename

input_sequence_filename
FAST[AQ] sequence file to trim

-h, --help
show this help message and exit

--version
show program’s version number and exit

-q, --quiet

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on tablesize to use

--threads <int>, -T <int>
Number of simultaneous threads to execute

--cutoff <int>, -C <int>
Trim at k-mers below this abundance.

--savetable <filename>
If present, the name of the file to save the k-mer counting table to

--report-total-kmers, -t
Prints the total number of k-mers to stderr

Trimmed sequences will be placed in ${input_sequence_filename}.abundfilt.

This script is constant memory.

To trim reads based on k-mer abundance across multiple files, use load-into-counting.py and filter-abund.py.

Example:

filter-abund-single.py -k 20 -x 5e7 -C 2 data/100k-filtered.fa

5.1.6 count-median.py

Count k-mers summary stats for sequences

usage: count-median.py [-h] [–version] input_counting_table_filename input_sequence_filename out-
put_summary_filename

input_counting_table_filename
input k-mer count table filename

input_sequence_filename
input FAST[AQ] sequence filename

output_summary_filename
output summary filename

5.1. k-mer counting and abundance filtering 17

khmer Documentation, Release 1.1

-h, --help
show this help message and exit

--version
show program’s version number and exit

Count the median/avg k-mer abundance for each sequence in the input file, based on the k-mer counts in the given
k-mer counting table. Can be used to estimate expression levels (mRNAseq) or coverage (genomic/metagenomic).

The output file contains sequence id, median, average, stddev, and seq length.

NOTE: All ‘N’s in the input sequences are converted to ‘G’s.

5.1.7 count-overlap.py

Count the overlap k-mers which are the k-mers appearing in two sequence datasets.

usage: count-overlap.py [-h] [–version] [-q] [–ksize KSIZE] [–n_tables N_TABLES] [–min-tablesize
MIN_TABLESIZE] input_presence_table_filename input_sequence_filename output_report_filename

input_presence_table_filename
input k-mer presence table filename

input_sequence_filename
input sequence filename

output_report_filename
output report filename

-h, --help
show this help message and exit

--version
show program’s version number and exit

-q, --quiet

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on tablesize to use

An additional report will be written to ${output_report_filename}.curve containing the increase of overlap k-mers as
the number of sequences in the second database increases.

5.2 Partitioning

5.2.1 do-partition.py

Load, partition, and annotate FAST[AQ] sequences

usage: do-partition.py [-h] [–version] [-q] [–ksize KSIZE] [–n_tables N_TABLES] [–min-tablesize
MIN_TABLESIZE] [–subset-size SUBSET_SIZE] [–no-big-traverse] [–threads N_THREADS] [–keep-subsets]
graphbase input_sequence_filename [input_sequence_filename ...]

18 Chapter 5. khmer’s command-line interface

khmer Documentation, Release 1.1

graphbase
base name for output files

input_sequence_filename
input FAST[AQ] sequence filenames

-h, --help
show this help message and exit

--version
show program’s version number and exit

-q, --quiet

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on tablesize to use

--subset-size <float>, -s <float>
Set subset size (usually 1e5-1e6 is good)

--no-big-traverse
Truncate graph joins at big traversals

--threads, -T
Number of simultaneous threads to execute

--keep-subsets
Keep individual subsets (default: False)

Load in a set of sequences, partition them, merge the partitions, and annotate the original sequences files with the
partition information.

This script combines the functionality of load-graph.py, partition-graph.py, merge-partitions.py, and annotate-
partitions.py into one script. This is convenient but should probably not be used for large data sets, because do-
partition.py doesn’t provide save/resume functionality.

5.2.2 load-graph.py

Load sequences into the compressible graph format plus optional tagset.

usage: load-graph.py [-h] [–version] [-q] [–ksize KSIZE] [–n_tables N_TABLES] [–min-tablesize MIN_TABLESIZE]
[–threads N_THREADS] [–no-build-tagset] [–report-total-kmers] output_presence_table_filename in-
put_sequence_filename [input_sequence_filename ...]

output_presence_table_filename
output k-mer presence table filename.

input_sequence_filename
input FAST[AQ] sequence filename

-h, --help
show this help message and exit

--version
show program’s version number and exit

-q, --quiet

5.2. Partitioning 19

khmer Documentation, Release 1.1

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on tablesize to use

--threads <int>, -T <int>
Number of simultaneous threads to execute

--no-build-tagset, -n
Do NOT construct tagset while loading sequences

--report-total-kmers, -t
Prints the total number of k-mers to stderr

See extract-partitions.py for a complete workflow.

5.2.3 partition-graph.py

Partition a sequence graph based upon waypoint connectivity

usage: partition-graph.py [-h] [–stoptags filename] [–subset-size SUBSET_SIZE] [–no-big-traverse] [–version] [–
threads THREADS] basename

basename
basename of the input k-mer presence table + tagset files

-h, --help
show this help message and exit

--stoptags <filename>, -S <filename>
Use stoptags in this file during partitioning

--subset-size <float>, -s <float>
Set subset size (usually 1e5-1e6 is good)

--no-big-traverse
Truncate graph joins at big traversals

--version
show program’s version number and exit

--threads <int>, -T <int>
Number of simultaneous threads to execute

The resulting partition maps are saved as ‘${basename}.subset.#.pmap’ files.

See ‘Artifact removal’ to understand the stoptags argument.

5.2.4 merge-partition.py

Merge partition map ‘.pmap’ files.

usage: merge-partition.py [-h] [–ksize KSIZE] [–keep-subsets] [–version] graphbase

graphbase
basename for input and output files

20 Chapter 5. khmer’s command-line interface

khmer Documentation, Release 1.1

-h, --help
show this help message and exit

--ksize <int>, -k <int>
k-mer size (default: 32)

--keep-subsets
Keep individual subsets (default: False)

--version
show program’s version number and exit

Take the ${graphbase}.subset.#.pmap files and merge them all into a single ${graphbase}.pmap.merged file for
annotate-partitions.py to use.

5.2.5 annotate-partitions.py

Annotate sequences with partition IDs.

usage: annotate-partitions.py [-h] [–ksize KSIZE] [–version] graphbase input_sequence_filename [in-
put_sequence_filename ...]

graphbase
basename for input and output files

input_sequence_filename
input FAST[AQ] sequences to annotate.

-h, --help
show this help message and exit

--ksize <int>, -k <int>
k-mer size (default: 32)

--version
show program’s version number and exit

Load in a partitionmap (generally produced by partition-graph.py or merge-partitions.py) and annotate the sequences
in the given files with their partition IDs. Use extract-partitions.py to extract sequences into separate group files.

Example (results will be in random-20-a.fa.part):

load-graph.py -k 20 example tests/test-data/random-20-a.fa
partition-graph.py example
merge-partitions.py -k 20 example
annotate-partitions.py -k 20 example tests/test-data/random-20-a.fa

5.2.6 extract-partitions.py

Separate sequences that are annotated with partitions into grouped files.

usage: extract-partitions.py [-h] [–max-size MAX_SIZE] [–min-partition-size MIN_PART_SIZE] [–no-output-
groups] [–output-unassigned] [–version] output_filename_prefix input_partition_filename [input_partition_filename
...]

output_filename_prefix

input_partition_filename

-h, --help
show this help message and exit

5.2. Partitioning 21

khmer Documentation, Release 1.1

--max-size <int>, -X <int>
Max group size (n sequences)

--min-partition-size <int>, -m <int>
Minimum partition size worth keeping

--no-output-groups, -n
Do not actually output groups files.

--output-unassigned, -U
Output unassigned sequences, too

--version
show program’s version number and exit

Example (results will be in example.group0000.fa):

load-graph.py -k 20 example tests/test-data/random-20-a.fa
partition-graph.py example
merge-partitions.py -k 20 example
annotate-partitions.py -k 20 example tests/test-data/random-20-a.fa
extract-partitions.py example random-20-a.fa.part

5.2.7 Artifact removal

The following scripts are specialized scripts for finding and removing highly-connected k-mers (HCKs). See Parti-
tioning large data sets (50m+ reads).

make-initial-stoptags.py

Find an initial set of highly connected k-mers.

usage: make-initial-stoptags.py [-h] [–version] [-q] [–ksize KSIZE] [–n_tables N_TABLES] [–min-tablesize
MIN_TABLESIZE] [–subset-size SUBSET_SIZE] [–stoptags filename] graphbase

graphbase
basename for input and output filenames

-h, --help
show this help message and exit

--version
show program’s version number and exit

-q, --quiet

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on tablesize to use

--subset-size <float>, -s <float>
Set subset size (default 1e4 is prob ok)

--stoptags <filename>, -S <filename>
Use stoptags in this file during partitioning

22 Chapter 5. khmer’s command-line interface

khmer Documentation, Release 1.1

Loads a k-mer presence table/tagset pair created by load-graph.py, and does a small set of traversals from graph
waypoints; on these traversals, looks for k-mers that are repeatedly traversed in high-density regions of the graph,
i.e. are highly connected. Outputs those k-mers as an initial set of stoptags, which can be fed into partition-graph.py,
find-knots.py, and filter-stoptags.py.

The k-mer counting table size options parameters are for a k-mer counting table to keep track of repeatedly-traversed
k-mers. The subset size option specifies the number of waypoints from which to traverse; for highly connected data
sets, the default (1000) is probably ok.

find-knots.py

Find all highly connected k-mers.

usage: find-knots.py [-h] [–n_tables N_TABLES] [–min-tablesize MIN_TABLESIZE] [–version] graphbase

graphbase
Basename for the input and output files.

-h, --help
show this help message and exit

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on the size of the k-mer counting table(s)

--version
show program’s version number and exit

Load an k-mer presence table/tagset pair created by load-graph, and a set of pmap files created by partition-graph.
Go through each pmap file, select the largest partition in each, and do the same kind of traversal as in make-initial-
stoptags.py from each of the waypoints in that partition; this should identify all of the HCKs in that partition. These
HCKs are output to <graphbase>.stoptags after each pmap file.

Parameter choice is reasonably important. See the pipeline in Partitioning large data sets (50m+ reads) for an example
run.

This script is not very scalable and may blow up memory and die horribly. You should be able to use the intermediate
stoptags to restart the process, and if you eliminate the already-processed pmap files, you can continue where you left
off.

filter-stoptags.py

Trim sequences at stoptags.

usage: filter-stoptags.py [-h] [–ksize KSIZE] [–version] input_stoptags_filename input_sequence_filename [in-
put_sequence_filename ...]

input_stoptags_filename

input_sequence_filename

-h, --help
show this help message and exit

--ksize <int>, -k <int>
k-mer size

--version
show program’s version number and exit

5.2. Partitioning 23

khmer Documentation, Release 1.1

Load stoptags in from the given .stoptags file and use them to trim or remove the sequences in <file1-N>. Trimmed
sequences will be placed in <fileN>.stopfilt.

5.3 Digital normalization

5.3.1 normalize-by-median.py

Do digital normalization (remove mostly redundant sequences)

usage: normalize-by-median.py [-h] [–version] [-q] [–ksize KSIZE] [–n_tables N_TABLES] [–min-tablesize
MIN_TABLESIZE] [-C CUTOFF] [-p] [-s filename] [-R filename] [-f] [–save-on-failure] [-d DUMP_FREQUENCY]
[-o filename] [–report-total-kmers] [-l filename] input_sequence_filename [input_sequence_filename ...]

input_sequence_filename
Input FAST[AQ] sequence filename.

-h, --help
show this help message and exit

--version
show program’s version number and exit

-q, --quiet

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of k-mer counting tables to use

--min-tablesize <float>, -x <float>
lower bound on tablesize to use

-C <int>, --cutoff <int>

-p, --paired

-s <filename>, --savetable <filename>

-R <filename>, --report <filename>

-f, --fault-tolerant
continue on next file if read errors are encountered

--save-on-failure
Save k-mer counting table when an error occurs

-d <int>, --dump-frequency <int>
dump k-mer counting table every d files

-o <filename>, --out <filename>
only output a single file with the specified filename

--report-total-kmers, -t
Prints the total number of k-mers post-normalization to stderr

-l <filename>, --loadtable <filename>
load a precomputed k-mer table from disk

Discard sequences based on whether or not their median k-mer abundance lies above a specified cutoff. Kept sequences
will be placed in <fileN>.keep.

24 Chapter 5. khmer’s command-line interface

khmer Documentation, Release 1.1

Paired end reads will be considered together if -p is set. If either read will be kept, then both will be kept. This should
result in keeping (or discarding) each sequencing fragment. This helps with retention of repeats, especially.

With -s/--savetable, the k-mer counting table will be saved to the specified file after all sequences have been
processed. With -d, the k-mer counting table will be saved every d files for multifile runs; if -s is set, the specified
name will be used, and if not, the name backup.ct will be used. -l/--loadtable will load the specified k-mer
counting table before processing the specified files. Note that these tables are are in the same format as those produced
by load-into-counting.py and consumed by abundance-dist.py.

-f/--fault-tolerant will force the program to continue upon encountering a formatting error in a sequence
file; the k-mer counting table up to that point will be dumped, and processing will continue on the next file.

Example:

normalize-by-median.py -k 17 tests/test-data/test-abund-read-2.fa

Example:

normalize-by-median.py -p -k 17 tests/test-data/test-abund-read-paired.fa

Example:

normalize-by-median.py -k 17 -f tests/test-data/test-error-reads.fq tests/test-data/test-fastq-reads.fq

Example:

normalize-by-median.py -k 17 -d 2 -s test.ct tests/test-data/test-abund-read-2.fa tests/test-data/test-fastq-reads

5.4 Read handling: interleaving, splitting, etc.

5.4.1 extract-long-sequences.py

Extract FASTQ or FASTA sequences longer than specified length (default: 200 bp).

usage: extract-long-sequences.py [-h] [-o OUTPUT] [-l LENGTH] input_filenames [input_filenames ...]

input_filenames
Input FAST[AQ] sequence filename.

-h, --help
show this help message and exit

-o, --output
The name of the output sequence file.

-l <int>, --length <int>
The minimum length of the sequence file.

5.4.2 extract-paired-reads.py

Take a mixture of reads and split into pairs and orphans.

usage: extract-paired-reads.py [-h] [–version] infile

infile

-h, --help
show this help message and exit

5.4. Read handling: interleaving, splitting, etc. 25

khmer Documentation, Release 1.1

--version
show program’s version number and exit

The output is two files, <input file>.pe and <input file>.se, placed in the current directory. The .pe file contains
interleaved and properly paired sequences, while the .se file contains orphan sequences.

Many assemblers (e.g. Velvet) require that you give them either perfectly interleaved files, or files containing only
single reads. This script takes files that were originally interleaved but where reads may have been orphaned via error
filtering, application of abundance filtering, digital normalization in non-paired mode, or partitioning.

Example:

extract-paired-reads.py tests/test-data/paired.fq

5.4.3 fastq-to-fasta.py

Converts FASTQ format (.fq) files to FASTA format (.fa).

usage: fastq-to-fasta.py [-h] [-o OUTPUT] [-n] input_sequence

input_sequence
The name of the input FASTQ sequence file.

-h, --help
show this help message and exit

-o, --output
The name of the output FASTA sequence file.

-n, --n_keep
Option to drop reads containing ‘N’s in input_sequence file.

5.4.4 interleave-reads.py

Produce interleaved files from R1/R2 paired files

usage: interleave-reads.py [-h] [-o filename] [–version] infiles [infiles ...]

infiles

-h, --help
show this help message and exit

-o <filename>, --output <filename>

--version
show program’s version number and exit

The output is an interleaved set of reads, with each read in <R1> paired with a read in <R2>. By default, the output
goes to stdout unless -o/--output is specified.

As a “bonus”, this file ensures that read names are formatted in a consistent way, such that they look like the pre-1.8
Casava format (@name/1, @name/2).

Example:

interleave-reads.py tests/test-data/paired.fq.1 tests/test-data/paired.fq.2 -o paired.fq

26 Chapter 5. khmer’s command-line interface

khmer Documentation, Release 1.1

5.4.5 sample-reads-randomly.py

Uniformly subsample sequences from a collection of files

usage: sample-reads-randomly.py [-h] [-N NUM_READS] [-M MAX_READS] [-S NUM_SAMPLES] [-R RAN-
DOM_SEED] [-o output_file] [–version] filenames [filenames ...]

filenames

-h, --help
show this help message and exit

-N <int>, --num_reads <int>

-M <int>, --max_reads <int>

-S <int>, --samples <int>

-R <int>, --random-seed <int>

-o <output_file>, --output <output_file>

--version
show program’s version number and exit

Take a list of files containing sequences, and subsample 100,000 sequences (-N /--num_reads) uniformly, using
reservoir sampling. Stop after first 100m sequences (-M /--max_reads). By default take one subsample, but take
-S/--samples samples if specified.

The output is placed in -o/--output <file> (for a single sample) or in <file>.subset.0 to <file>.subset.S-1 (for more
than one sample).

This script uses the reservoir sampling algorithm.

5.4.6 split-paired-reads.py

Split interleaved reads into two files, left and right.

usage: split-paired-reads.py [-h] [–version] infile

infile

-h, --help
show this help message and exit

--version
show program’s version number and exit

Some programs want paired-end read input in the One True Format, which is interleaved; other programs want input
in the Insanely Bad Format, with left- and right- reads separated. This reformats the former to the latter.

Example:

split-paired-reads.py tests/test-data/paired.fq

5.4. Read handling: interleaving, splitting, etc. 27

http://en.wikipedia.org/wiki/Reservoir_sampling

khmer Documentation, Release 1.1

28 Chapter 5. khmer’s command-line interface

CHAPTER 6

Blog posts and additional documentation

6.1 Hashtable and filtering

The basic inexact-matching approach used by the hashtable code is described in this blog post:

http://ivory.idyll.org/blog/jul-10/kmer-filtering

A test data set (soil metagenomics, 88m reads, 10gb) is here:

http://angus.ged.msu.edu.s3.amazonaws.com/88m-reads.fa.gz

6.2 Illumina read abundance profiles

khmer can be used to look at systematic variations in k-mer statistics across Illumina reads; see, for example, this blog
post:

http://ivory.idyll.org/blog/jul-10/illumina-read-phenomenology

The fasta-to-abundance-hist and abundance-hist-by-position scripts can be used to generate the k-mer abundance pro-
file data, after loading all the k-mer counts into a .kh file:

first, load all the k-mer counts:
load-into-counting.py -k 20 -x 1e7 25k.kh data/25k.fq.gz

then, build the ’.freq’ file that contains all of the counts by position
python sandbox/fasta-to-abundance-hist.py 25k.kh data/25k.fq.gz

sum across positions.
python sandbox/abundance-hist-by-position.py data/25k.fq.gz.freq > out.dist

The hashtable method ‘dump_kmers_by_abundance’ can be used to dump high abundance k-mers, but we don’t have
a script handy to do that yet.

You can assess high/low abundance k-mer distributions with the hi-lo-abundance-by-position script:

load-into-counting.py -k 20 25k.kh data/25k.fq.gz
python sandbox/hi-lo-abundance-by-position.py 25k.kh data/25k.fq.gz

This will produce two output files, <filename>.pos.abund=1 and <filename>.pos.abund=255.

29

http://ivory.idyll.org/blog/jul-10/kmer-filtering
http://angus.ged.msu.edu.s3.amazonaws.com/88m-reads.fa.gz
http://ivory.idyll.org/blog/jul-10/illumina-read-phenomenology
http://github.com/ctb/khmer/blob/master/sandbox/fasta-to-abundance-hist.py
http://github.com/ctb/khmer/blob/master/sandbox/abundance-hist-by-position.py
http://github.com/ctb/khmer/blob/master/sandbox/hi-lo-abundance-by-position.py

khmer Documentation, Release 1.1

30 Chapter 6. Blog posts and additional documentation

CHAPTER 7

Choosing table sizes for khmer

If you look at the documentation for the scripts (khmer’s command-line interface) you’ll see two mysterious parameters
– -N and -x, or, more verbosely, -n_tables and --tablesize. What are these, and how do you specify them?

7.1 The really short version

There is no way (except for experience, rules of thumb, and intuition) to know what these parameters should be up
front. So, make the product of these two parameters be the size of your available memory:

-N 4 -x 4e9

for a machine with 16 GB of free memory, for example. Also see the rules of thumb, below.

7.2 The short version

These parameters specify the maximum memory usage of the primary data structure in khmer, which is basically N
big hash tables of size x. The product of the number of hash tables and the size of the hash tables specifies the total
amount of memory used.

This table is used to track k-mers. If it is too small, khmer will fail in various ways (and should complain), but there
is no harm in making it too large. So, the absolute safest thing to do is to specify as much memory as is available.
Most scripts will inform you of the total memory usage, and (at the end) will complain if it’s too small.

For normalize-by-median, khmer uses one byte per hash entry, so: if you had 16 GB of available RAM, you should
specify something like -N 4 -x 4e9, which multiplies out to about 16 GB.

For the graph partitioning stuff, khmer uses only 1 bit per k-mer, so you can multiple your available memory by 8: for
16 GB of RAM, you could use

-N 4 -x 32e9

which multiplies out to 128 Gbits of RAM, or 16 Gbytes.

Life is a bit more complicated than this, however, because some scripts – load-into-counting and load-graph – keep
ancillary information that will consume memory beyond this table data structure. So if you run out of memory,
decrease the table size.

Also see the rules of thumb, below.

31

khmer Documentation, Release 1.1

7.3 The real full version

khmer’s scripts, at their heart, represents k-mers in a very memory efficient way by taking advantage of two data
structures, Bloom filters and CountMin Sketches, that are both probabilistic and constant memory. The “probabilistic”
part means that there are false positives: the less memory you use, the more likely it is that khmer will think that
k-mers are present when they are not, in fact, present.

Digital normalization (normalize-by-median and filter-abund) uses the CountMin Sketch data structure.

Graph partitioning (load-graph etc.) uses the Bloom filter data structure.

The practical ramifications of this are pretty cool. For example, your digital normalization is guaranteed not to increase
in memory utilization, and graph partitioning is estimated to be 10-20x more memory efficient than any other de Bruijn
graph representation. And hash tables (which is what Bloom filters and CountMin Sketches use) are really fast and
efficient. Moreover, the optimal memory size for these primary data structures is dependent on the number of k-mers,
but not explicitly on the size of k itself, which is very unusual.

In exchange for this memory efficiency, however, you gain a certain type of parameter complexity. Unlike your more
typical k-mer package (like the Velvet assembler, or Jellyfish or Meryl or Tallymer), you are either guaranteed not to
run out of memory (for digital normalization) or much less likely to do so (for partitioning).

The biggest problem with khmer is that there is a minimum hash number and size that you need to specify for a given
number of k-mers, and you cannot confidently predict what it is before actually loading in the data. This, by the way,
is also true for de Bruijn graph assemblers and all the other k-mer-based software – the final memory usage depends
on the total number of k-mers, which in turn depends on the true size of your underlying genomic variation (e.g.
genome or transcriptome size), the number of errors, and the k-mer size you choose (the k parameter) [see Conway
& Bromage, 2011]. The number of reads or the size of your data set is only somewhat correlated with the total
number of k-mers. Trimming protocols, sequencing depth, and polymorphism rates are all important factors that
affect k-mer count.

The bad news is that we don’t have good ways to estimate total k-mer count a priori, although we can give you some
rules of thumb, below. In fact, counting the total number of distinct k-mers is a somewhat annoying challenge. Frankly,
we recommend just guessing instead of trying to be all scientific about it.

The good news is that you can never give khmer too much memory! k-mer counting and set membership simply gets
more and more accurate as you feed it more memory. (Although there may be performance hits from memory I/O,
e.g. see the NUMA architecture.) The other good news is that khmer can measure the false positive rate and detect
dangerously low memory conditions. For partitioning, we actually know what a too-high false positive rate is – our
k-mer percolation paper lays out the math. For digital normalization, we assume that a false positive rate of 10% is
bad. In both cases the data-loading scripts will exit with an error-code.

7.3.1 Rules of thumb

Just use -N 4, always, and vary the -x parameter.

For digital normalization, we recommend:

• -x 2e9 for any amount of sequencing for a single microbial genome, MDA-amplified or single colony.

• -x 4e9 for up to a billion mRNAseq reads from any organism. Past that, increase it.

• -x 8e9 for most eukaryotic genome samples.

• -x 8e9 will also handle most “simple” metagenomic samples (HMP on down)

• For metagenomic samples that are more complex, such as soil or marine, start as high as possible. For example,
we are using -x 64e9 for ~300 Gbp of soil reads.

32 Chapter 7. Choosing table sizes for khmer

http://en.wikipedia.org/wiki/Bloom_filter
https://sites.google.com/site/countminsketch/
http://www.ncbi.nlm.nih.gov/pubmed?term=21245053
http://www.ncbi.nlm.nih.gov/pubmed?term=21245053
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://arxiv.org/abs/1112.4193

khmer Documentation, Release 1.1

For partitioning of complex metagenome samples, we recommend starting as high as you can – something like half
your system memory. So if you have 256 GB of RAM, use -N 4 -x 256e9 which will use 4 x 256 / 8 = 128 GB
of RAM for the basic graph storage, leaving other memory for the ancillary data structures.

7.3. The real full version 33

khmer Documentation, Release 1.1

34 Chapter 7. Choosing table sizes for khmer

CHAPTER 8

Partitioning large data sets (50m+ reads)

“Partitioning” is what khmer calls the process of separating reads that do not connect to each other into different
logical bins. The goal of partitioning is to apply divide & conquer to the process of metagenomic assembly.

8.1 Basic partitioning

The basic workflow for partitioning is in the figure below:

Briefly, you load everything into khmer’s probabilistic graph representation; exhaustively explore the graph to find
all disconnected sequences; merge the results of the (parallelized) graph exploration; annotate sequences with their
partition; and then extract the different partitions into files grouped by partition size. These groups can then be
assembled individually.

8.2 Artifact removal

As part of our partitioning research, we discovered that large Illumina data sets tend to contain a single large, connected
component. This connected component seems to stem from sequencing artifacts that causes knots in the assembly
graph. We have developed tools to forcibly remove the knot at the heart of the graph.

Here’s the workflow:

35

khmer Documentation, Release 1.1

8.3 Running on an example data set

Here is a set of commands for running both basic partitioning and artifact removal on a small soil metagenomics data
set that we’ve made available for this purpose.

The data set is about 1.1G and you can download it from here:

https://s3.amazonaws.com/public.ged.msu.edu/khmer/iowa-corn-50m.fa.gz

cd /path/to/data

the next command will create a ’50m.ct’ and a ’50m.tagset’,
representing the de Bruijn graph
load-graph.py -k 32 -N 4 -x 16e9 50m iowa-corn-50m.fa.gz

this will then partition that graph. should take a while.
update threads to something higher if you have more cores.
this creates a bunch of files, 50m.subset.*.pmap
partition-graph.py --threads 4 -s 1e5 50m

now, merge the pmap files into one big pmap file, 50m.pmap.merged
merge-partitions.py 50m

next, annotate the original sequences with their partition numbers.
this will create iowa-corn-50m.fa.gz.part
annotate-partitions.py 50m iowa-corn-50m.fa.gz

now, extract the partitions in groups into ’iowa-corn-50m.groupNNNN.fa’
extract-partitions.py iowa-corn-50m iowa-corn-50m.fa.gz.part

at this point, you can assemble the group files individually. Note,
however, that the last one them is quite big? this is because it’s
the lump! yay!

if you want to break up the lump, go through the partitioning bit
on the group file, but this time with a twist:
mv iowa-corn-50m.group0005.fa corn-50m.lump.fa

create graph,
load-graph.py -x 8e9 lump corn-50m.lump.fa

36 Chapter 8. Partitioning large data sets (50m+ reads)

https://s3.amazonaws.com/public.ged.msu.edu/khmer/iowa-corn-50m.fa.gz

khmer Documentation, Release 1.1

create an initial set of stoptags to help in knot-traversal; otherwise,
partitioning and knot-traversal (which is systematic) is really expensive.
make-initial-stoptags.py lump

now partition the graph, using the stoptags file
partition-graph.py --stoptags lump.stoptags lump

use the partitioned subsets to find the k-mers that nucleate the lump
find-knots.py -x 2e8 -N 4 lump

remove those k-mers from the fasta files
filter-stoptags.py *.stoptags corn-50m.lump.fa

now, reload the filtered data set in and partition again.
NOTE: ’load-graph.py’ uses the file extension to determine
if the file is formatted as FASTA or FASTQ. The default is
fasta, therefore if your files are fastq formatted you need
to append ’fastq’ to the name so that ’load-graph.py’
will parse the file correctly
load-graph.py -x 8e9 lumpfilt corn-50m.lump.fa.stopfilt
partition-graph.py -T 4 lumpfilt
merge-partitions.py lumpfilt
annotate-partitions.py lumpfilt corn-50m.lump.fa.stopfilt
extract-partitions.py corn-50m-lump corn-50m.lump.fa.stopfilt.part

and voila, after all that, you should now have your de-knotted lump in
corn-50m-lump.group*.fa. The *.group????.fa files can now be
assembled individually by your favorite assembler.

8.4 Post-partitioning assembly

The ‘extract-partitions’ script takes reads belonging to each partition and aggregates them into ‘group’ files; each
group file contains at least one entire partition (and generally a lot more). Note, you can control the number of reads
in each file (equiv, the size of these files) with some of the arguments that ‘extract-partitions’ takes.

Now that you have these files... what do you do with them? The short answer is: assemble them! Each of these group
files contains reads that do not connect to reads in other files, so the files can be assembled individually (which is the
whole point of partitioning).

If you’re using Velvet, checkout the sandbox/velvet-assemble.sh script, which you can run like this:

bash /path/to/khmer/sandbox/velvet-assemble.sh <groupfile> <k>

This script does three things:

• first, it breaks the reads up into paired reads and single reads, and puts them in separate files (.pe and .se);

• second, it strips off the partition information from the reads, which confuses Velvet;

• and third, it runs velveth and velvetg to actually assemble.

You can implement your own approach, of course, but this is an example of what we do ourselves.

8.4. Post-partitioning assembly 37

khmer Documentation, Release 1.1

38 Chapter 8. Partitioning large data sets (50m+ reads)

CHAPTER 9

Architecture and Design

What follows is an attempt to describe the overall architecture and design of the khmer software under the hood. Where
appropriate, implementation details will be mentioned. Also, possible future directions and design considerations will
be mentioned as appropriate.

9.1 Overview

Data pumps stage data from disk storage into an in-memory cache. The in-memory cache is divided into segments, one
segment per thread. A cache manager exposes an interface for staging the data via the data pumps and for accessing
the data in the cache segments. Read parsers convert the staged data into read objects. A separate state object is
maintained for each thread using a parser. Existing-tracking or counting Bloom filters can use the read parsers as a
source of reads from which to extract k-mers.

The read parsers and the layers under them can be controlled via global configuration objects, which provide default
values during their instantiation. In many cases, these default values can also be overridden by supplying pertinent
arguments to the constructors. Only one global configuration object is considered active at a given time; but, a singleton
pattern is not enforced and more than one may be available to supply alternative configurations.

The top-level makefile for the project contains a user-configurable section, wherein preprocessor, compiler, and linker
options may be selected via convenient, prefabricated bundles. The ability to generate profiling instrumentation,
compile with debugging symbols, and to generate tracing instrumentation are all controlled via these option bundles.
The lower levels of the code, such as the data pumps, cache manager, and read parsers all have significant built-in
profiling and tracing instrumentation. This instrumentation is conditionally-compiled according to the option bundles
selected in the top-level makefile.

9.2 Namespace

Unless otherwise noted, all C++ classes, functions, and static variables noted in this document are members of the
khmer namespace. Likewise, unless otherwise noted, all Python classes, functions, and module variables noted in
this document are members of the khmer module.

Todo
Use breathe to interface with Doxygen for better documentation.

39

khmer Documentation, Release 1.1

9.3 Configuration Objects

9.3.1 C++ API

The declaration of the configuration objects is contained in lib/khmer_config.hh.

class Config

Config& get_active_config()

void set_active_config(Config& c)

An active configuration object is always present. A reference to this object is supplied via the
get_active_config() function. The initial settings of the active configuration object are quite conser-
vative. New configuration objects are created with the empty constructor; all settings modifications occur
upon already-created instances via their setter methods. The active configuration object can be set via the
set_active_config() function, which takes a reference to a Config object as its only argument.

Except for read-only configuration options, such as extra sanity checking, which are determined at the time of compi-
lation, the configuration options are manipulated via getter/setter methods. The most prominent or useful getter/setter
methods are the following:

uint32_t Config::get_number_of_threads() const

void Config::set_number_of_threads(uint32_t const n)

uint64_t const Config::get_reads_input_buffer_size() const

void Config::set_reads_input_buffer_size(uint64_t const sz)

9.3.2 Python API

The Config objects are exposed in the Python wrapper.

khmer.get_config()

khmer.set_config(c)

The C++ getter/setter methods are exposed via the same names in Python.

Todo
The getter/setter methods should be exposed as properties in Python.

9.4 Trace Loggers

Trace loggers can log execution traces and other useful debugging information to files on a per-thread basis. This
makes them very useful for debugging multi-threaded code, especially in the absence of advanced commercial de-
buggers, such as DDT or TotalView. Trace loggers are controlled via several user-configurable variables in the top-
level makefile. As of this writing, these variables are WITH_INTERNAL_TRACING, TRACE_STATE_CHANGES,
TRACE_BUSYWAITS, TRACE_SPINLOCKS, TRACE_MEMCOPIES, and TRACE_DATA. The TRACE_ options are
ineffective unless WITH_INTERNAL_TRACING is set to true.

Todo
Replace the editing of makefiles with a configure script or else move to an all-Pythonic regime where the user would
edit setup.cfg. See issue #9 in the Github issue tracker for the project.

40 Chapter 9. Architecture and Design

https://github.com/ged-lab/khmer/issues/9

khmer Documentation, Release 1.1

The data pump and read parser code, as well as some of the Bloom filter code, is impregnated with trace loggers. Other
parts of the source code could use them as well.

Trace logger objects are not exposed directly via the Python wrapper; they are only available in the C++ API. The
trace logger class is declared in the lib/trace_logger.hh file.

class TraceLogger

Tracing be performed at coarser or finer levels of detail, as desired. An enumeration of named integral constants
provides the available levels. The use of TLVL_ALLwill trace everything which is instrumented for tracing. After that,
TLVL_DEBUG9 is the next finest level of detail. The enumeration ascends to higher and higher numerical values which
indicate more coarseness; specifically the ordering is trace levels TLVL_DEBUG8 through TLVL_DEBUG0, followed
by TLVL_INFO9 through TLVL_INFO0, and then TLVL_WARNING, TLVL_ERROR, and TLVL_CRITICAL. The
special level TLVL_NONE means that nothing will be traced even though tracing may be activated at compile time.
Note that TLVL_ALL corresponds to 0 and TLVL_NONE corresponds to 255; this is useful for setting trace levels in
method arguments via the Python interface.

Todo
Expose trace level names via the Python interface.

Todo
Allow C++ TraceLogger objects to be targets of Python logging module?

Two constructors are available for instantiating objects of type TraceLogger. One takes the trace level and a FILE
* stream handle. The other takes the trace level, a file name format string, and a variable number of arguments to
sprintf into that format string. This form exists so that trace files, named according to logical thread ID, can be
created, for example. The trace level argument is the finest requested level of detail which will be traced by the object.

The objects instantiated by these constructors are function objects (also sometimes known as functors to the chagrin
of some mathematicians). This is to say that the objects may be called.

void TraceLogger::operator()(uint8_t const level, char const* const format, ...) const

The level argument is the desired level of detail. If the object was instantiated for a coarser level than the requested
level, then nothing will be logged. The format argument is the format string for the underlying fprintf call and
a variable number of arguments may be supplied for use with this format string.

9.5 Performance Metrics

Performance metrics can be gathered on a per-thread basis and can measure things which are not covered by traditional
profiling tools. Such metrics may include the input or output rate in bytes per second, for example. Not all platforms
support the high resolution, per-thread timers needed to effectively use these metrics.

The Python wrapper does not presently support reporting on performance metrics.

Todo
Support reporting on performance metrics from within the Python wrapper.

The performance metrics abstract base class is declared in the lib/perf_metrics.hh file. This class is sub-
classed for various specific domains.

class IPerformanceMetrics

9.5. Performance Metrics 41

khmer Documentation, Release 1.1

The class provides a hassle-free stopwatch.

void IPerformanceMetrics::start_timers()

void IPerformanceMetrics::stop_timers()

These functions record the amount of physical time elapsed since the thread was created and the amount of time that
the thread has spent using CPU cores. Two sets of internal scratch variables are used for this purpose: one set of start
times and one set of stop times.

Warning: Because of the use of internal scratch variables, these methods are not reentrant. Timer deltas must be
collected before new calls can be issued to the stopwatch. This is the trade-off for convenience....

Once start and stop times have been accumulated, then a timer delta can be calculated and stowed in the appropriate
category. Categories are determined by keys which are defined in subclasses of the abstract class. The delta accu-
mulator takes a category key as an argument and is declared pure virtual in the abstract base class so that it must be
implemented in subclasses where they category keys are enumerated.

void IPerformanceMetrics::accumulate_timer_deltas(uint32_t metrics_key)

9.6 Input Data Pumps

An input data pump object copies data from a file into a cache in memory. Since accesses to memory are typically
three orders of magnitude faster than to an individual hard disk drive and since many operations to process the data
are slower than reading it from a file, it makes sense to stage some of it into memory. Having the data in memory can
reduce the latency from accessing it upon demand. And, the cache in memory can be filled more rapidly than it is
processed.

The input data pumps are declared in lib/read_parsers.hh. All of them derive from an abstract base class.

Todo
Refactor the data pumps into a separate header and implementation file.

class IStreamReader

Presently, three types of data pumps are implemented.

class RawStreamReader

class GzStreamReader

class Bz2StreamReader

These input data pumps are not exposed via the Python wrapper.

The IStreamReader interface defines one method of interest.

uint64_t const read_into_cache(uint8_t* const cache, uint64_t const cache_size)

This is a pure virtual method which must be overridden in subclasses. The cache parameter receives an argument
which is an arbitrary piece of memory which it treats as an array of bytes. The cache_size parameter receives an
argument which is the size, in bytes, of the cache. The return value is the number of bytes read into the cache from
file.

42 Chapter 9. Architecture and Design

khmer Documentation, Release 1.1

9.6.1 Raw Stream Reader

The raw stream reader is constructed from a file descriptor, such as returned by the open system call. An optional
read alignment may be supplied to this constructor. Depending on the operating system and file system, this may be
used as a chunk size and alignment for direct I/O. Otherwise, it is ignored. Direct I/O allows for blocks to copied
directly from a block device into user-space memory rather than passing through a kernel-space block cache first. This
reduces the number of memory copies involved in processing the data.

Warning: Direct I/O has received some testing within the software, but has not been tested enough to be consid-
ered production-ready.

Note: In principle, the file descriptor could number 0 (stdin) and one could create pipelines, but this is not supported
at the higher level interfaces.

Reading is currently performed in a synchronous manner, which is fine for most typical use cases of the software since
input is not the bottleneck.

Todo
Support asynchronous reading.

9.6.2 Gzip Stream Reader and Decompressor

The stream reader and decompressor for the gzip format is based on zlib. No direct I/O is supported by this stream
reader and its constructor therefore only accepts a file descriptor. Furthermore, data must be copied and decompressed
sequentially and cannot be read asynchronously. In the regime that higher level processing is fast, this stream reader is
likely to be a bottleneck, especially as there is overhead from decompression. However, as pipelining support does not
yet exist in the software, providing native support for a popular compression format makes sense. Also, some users
of the software may not be familiar with standard Unix compression tools, such as gzip; built-in support of popular
compression formats removes a barrier to entry for these users.

Todo
Implement higher level support for pipelining so that parallelized decompressors can feed a raw stream reader, assum-
ing that they can output decompressed data to stdout and do so in order. Alternatively, if a parallelized variant of zlib
can be found, then that should be used in place of zlib for native support.

9.6.3 Bzip2 Stream Reader and Decompressor

The stream reader and decompressor for the bzip2 format is based on the bzip2 library. The same notes and
considerations for the gzip stream reader also apply to this one as well.

As a historical note, it is worth mentioning that the logic for reading from a bzip2-compressed file stream is signif-
icantly more complicated than for raw or gzip-compressed streams because of the way the library API is structured
and the nature of the compression format. Prior to the architecture being described, data pumps and reads parsers were
tightly coupled and implementing a bzip2 data pump in that architecture would have been very painful. As it turns
out, the current architecture preemptively fixed a bug in the old gzip data pump before it was reported against that
architecture. So, this decoupled design has already paid for itself several times over.

9.6. Input Data Pumps 43

khmer Documentation, Release 1.1

9.7 Thread Identity Maps

Higher level processing requires that threads be able to persistently work with the same set of data. A thread does not
inherently “know” what its index into a particular lookup table is. However, this index can be mapped to an OS-native
identifier for a thread. Using an appropriate system call, a thread can query its own native identifier from the operating
system and then use this as a map key to find its logical identifier within the software. This logical identifier serves as
the thread’s index into any lookup tables which it may need to use.

The self-identification is also important on the grounds of a software engineering principle: don’t break existing
interfaces. Prior to the current architecture, the code was not thread-safe. In order to add thread-safety in a reliable
manner and not break existing interfaces, self-identification of threads was necessary.

The thread identity map class is declared in the lib/thread_id_map.hh file.

class ThreadIDMap

This class is not exposed via the Python wrapper as it is an internal mechanism. And, the implementation of the
class varies according to operating system. The only important method for those who wish to avail themselves to this
bookkeeping method is the one which returns the logical identifier (lookup table index) of the current thread.

uint32_t const ThreadIDMap::get_thread_id()

New entries are added to the map as new threads call this method for the first time. Thus, the bookkeeping is automatic
and does not get in the way of the developer.

9.8 Cache Managers

A cache manager provides memory into which an input data pump may copy. The provided memory is segmented on
a per-thread basis. On machines with multiple NUMA nodes, this can help performance by decreasing the likelihood
of cross-node fetches and stores. More importantly, it provides an association between a particular thread and a
particular cache segment, so that higher level processing, such as parsing, can always be guaranteed to operate on the
same contiguous portion of memory.

Todo
Implement pinning of threads to specific cores on operating systems which support this. Preventing the migration of
threads between cores should mostly eliminate cross-node fetches and stores.

The lib/read_parsers.hh file declares the cache manager and cache manager segment classes.

class CacheManager

class CacheManagerSegment

As multiple threads share access to the same data pump, the cache manager orchestrates access to this resource.
Internally, a spinlock is used to limit access to one thread at a time.

Todo
Increase period of spinlock trials from once per iteration to something greater, similar to what the other busywaiters
which perform atomic tests use.

Internally, a ThreadIDMap is used to match a current thread with its corresponding entry in the table of cache
segments. A convenience method is provided for the current thread to find its corresponding cache segment, creating
it if it doesn’t already exist.

CacheSegment& CacheManger::_get_segment(bool const higher=false)

44 Chapter 9. Architecture and Design

khmer Documentation, Release 1.1

This is a private method used only within cache mangers. The higher parameter is vestigial remnant from an earlier
implementation and can likely be removed.

Todo
Remove the higher parameter from _get_segment().

Developers wishing to use a cache manager rather than muck around in its implementation will probably find the
following methods most useful.

bool const CacheManager::has_more_data()

uint64_t const CacheManager::get_bytes(uint8_t* const buffer, uint64_t buffer_len)

void CacheManager::split_at(uint64_t const pos)

The has_more_data() method queries both the underlying stream and the current cache segment to see if more
data is available. If both the underlying stream is exhausted and the memory cursor, which tracks how much of a
cache segment has been accessed since its last refill, is at the end of the segment, then no more data is considered to
be available and the current thread hits a synchronization barrier to wait for the other threads to finish.

The get_bytes() method copies up to buffer_len bytes of memory from the current cache segment into the
supplied buffer buffer. All bookkeeping, such as replenishing the cache segment from the underlying stream, is
handled behind the scenes. The method also copies memory from the appropriate copyaside buffer as necessary.
Copyaside buffers are created by the split_at() method and represent extensions to the current cache segment.

Todo
Expose the underlying memory segments directly to higher level processing, such as parsing, to eliminate the memory
copy overhead that get_bytes() carries. Note that this comes at the cost of some horrid bookkeeping on the part
of the higher level functions. The get_bytes() method exists to handle this bookkeeping.

The split_at() method copies up to pos bytes from the beginning of the current cache segment into a copyaside
buffer. The copyaside buffer will then be available for the previous (in terms of lookup table index modulo the number
of threads) cache segment. This method helps with multi-threaded parsing of files when parser offsets into a file do not
correspond with record boundaries. A parser can scan forward to the next record boundary and then set the scanned
over bytes aside to be appended to the cache segment which contains the beginning of the partial record.

The initial implementation of the cache manager used setaside buffers, which were just reserved portions of cache
segments and no memory copies were performed. However, the bookkeeping was quite complicated and after several
bugs slipped through the cracks, the setaside buffer logic was converted to copyaside buffers. The cost of the memory
copies is essentially nothing in the typical use cases encountered by the software. Copyaside buffers are also much
more amenable to asynchronous refilling of cache segments, should that be supported at a later point.

Todo
Implement asynchronous refills of cache segments.

9.9 Reads and Read Pairs

Reads are simple data structures which contain genomic sequences, as well identifiers and quality scores for those
sequences. The class is declared in lib/read_parsers.hh.

class Read

The Python wrapper exposes an interface to reads.

9.9. Reads and Read Pairs 45

khmer Documentation, Release 1.1

class khmer.Read

The data members are accessed as properties. These mimic the access keys for screed records.

Read.name

Read.sequence

Read.accuracy

Read.annotations

No distinction is currently made between FASTA and FASTQ reads.

Todo
Create an IRead abstract base class and subclass for FASTA and FASTQ record types. This would remove wasted
fields for FASTA records and allow the type of records being used at any level of processing.

Read pairs are two reads bound together in a STL pair. This is intended to track sequences with paired ends.

9.10 Read Parsers

9.10.1 C++ API

Read parsers create the aforementioned Read objects. The lib/read_parsers.hh file declares an abstract base
class as well as FASTA and FASTQ parsers derived from that. These are made available from within a namespace
which encapsulates most classes in the lib/read_parsers.hh file.

class IParser

class FastaParser

class FastqParser

An instance of the appropriate subclass is created via a factory method provided by the abstract class. This method
infers the correct subclass instance to create based on file name extension. The file name is required but the other
arguments are optional. If the other arguments are supplied, then they override the defaults from the active Config
object.

IParser* const IParser::get_parser(std::string const& ifile_name, uint32_t const number_of_threads,
uint64_t const cache_size, uint8_t const trace_level)

Todo
Sniff file type rather than rely on extension.

Just as the CacheManager maintains per-thread state in CacheSegment objects, the parser classes maintain per-
thread state in special objects as well.

class ParserState

The parser state maintains a line buffer, among other things, and tracks how much of it has been parsed by each call to
the parser.

The IParser interface provides some useful methods.

bool IParser::is_complete()

void IParser::imprint_next_read(Read& the_read)

46 Chapter 9. Architecture and Design

khmer Documentation, Release 1.1

void IParser::imprint_next_read_pair(ReadPair& the_read_pair, uint8_t
mode=PAIR_MODE_ERROR_ON_UNPAIRED)

The is_complete() method checks if parsing of the current stream is complete and blocks in a synchronization
barrier if it is but some threads are still working.

The imprint_next_read() method attempts to parse another read from the file stream and create a Read object
from it. Note that a legacy method get_next_read is still available but its use in new code is discouraged. The
legacy method involves an additional memory copy.

The imprint_next_read_pair() method attempts to parse a pair of reads from the file stream a cre-
ate a ReadPair object from them. Currently, this has two implemented modes of operation with a third
one planned. The modes are PAIR_MODE_ALLOW_UNPAIRED, PAIR_MODE_IGNORE_UNPAIRED, and
PAIR_MODE_ERROR_ON_UNPAIRED. The first one is not yet implemented; it may be useful for filtering or di-
verting paired or unpaired reads out of a stream. The PAIR_MODE_IGNORE_UNPAIRED mode simply ignores
unpaired reads and only returns paired reads. The PAIR_MODE_ERROR_ON_UNPAIRED mode raises an exception
if an unpaired read is encountered. As a note, both the old-style (“/1” and “/2”) and new-style (“1...” and “2:...”)
Illumina read pairs are detected from sequence identifiers.

Todo
Implement PAIR_MODE_ALLOW_UNPAIRED mode.

Todo
Place burden of input parsing and output formatting on Read obects rather than on parser methods. Demote parsers
to role of facilitator. Maybe?

9.10.2 Python Wrapper

The Python wrapper exposes a read parser class.

class khmer.ReadParser

This class has no subclasses, but handles various formats appropriately. An instance of the class is an iterator, which
produces one read at a time. There is also a method for iterating over read pairs and the class exposes the same
constants for controlling its behavior as the underlying C++ class does.

ReadParser.iter_read_pairs(pair_mode)

9.11 k-mer Counters and Bloom Filters

9.11.1 C++ API

The Bloom filter counting is described elsewhere and so we won’t go into details of it here. Some of the methods of
the hash tables has been granted thread safety and can use the thread-safe IParser objects.

class Hashtable

class Hashbits

void Hashtable::consume_fasta(IParser* parser, unsigned int& total_reads, unsigned long
long& n_consumed, HashIntoType lower_bound, HashIntoType up-
per_bound, CallbackFn callback, void* callback_data)

9.11. k-mer Counters and Bloom Filters 47

khmer Documentation, Release 1.1

void Hashbits::consume_fasta_and_tag(IParser* parser, unsigned int& total_reads, unsigned long
long& n_consumed, CallbackFn callback, void* call-
back_data)

For legacy support, methods with signatures that have a file name parameter rather than a IParser parameter are
still provided as well. (They wrap the ones with the parser parameter.)

As with the cache managers and read parsers, the hashtables track per-thread state.

class Hasher

Since more than one pool of threads (e.g., one set of threads per reads parser and one reads parser per file stream)
may be used with a particular hash table object, the hash table objects internally maintain the notion of thread pools.
The universally unique identifier (UUID) of an object (e.g., a reads parser) is used to map to the correct thread pool.
This is behind-the-scenes accounting and a developer should generally not have to worry about this. But, if you are
converting another method to be thread-safe and it can take different reads parsers on different invocations, then be
sure to consider this.

Todo
Drop more logic currently implemented in Python to C++ to gain multi-threading efficiencies. Not everything can
really scale well using the existing interfaces working in Python.

Todo
Cache k-mers to hash in small buckets which correspond to regions of the hash tables. This will allow for multiple
updates per memory page and reduce the number of CPU cache misses.

Todo
Abstact the counter storage from the hash functions. A number of open issues can be addressed by doing this. The
counter storage might be better implemented with partial template specialization than with subclassing. For small hash
tables sizes, not hashing makes more sense because every possible k-mer in the k-mer space can be addressed directly
in memory. Counter storage will be most efficient for powers-of-two numbers of bits per counter. Blah, blah... these
and other thoughts are discussed more thoroughly in the various GitHub issues involving them.

9.11.2 Python Wrapper

The hash table objects have methods which take ReadParser objects and invoke the appropriate C++ methods
underneath the hood.

new_hashtable.consume_fasta_with_reads_parser(rparser)

new_counting_hash.consume_fasta_and_tag_with_reads_parser(rparser)

Todo
Convert factory functions into callable classes and properly attribute those classes.

9.12 Python Wrapper

The Python wrapper resides in python/_khmermodule.cc. C++ code is used to call the CPython API to bind
some of the C++ classes and methods to Python classes and methods. Some of the newer additions to the wrapper,
such as the Read and ReadParser classes should be considered models for future additions as they expose callable

48 Chapter 9. Architecture and Design

khmer Documentation, Release 1.1

classes with properties and iterators and which look just like Python classes for the most part. Much of the older code
relies on factory functions to create objects and those objects are not very Pythonic. The newer additions are also
much less cluttered and more readable (though the author of this sentence may be biased in this regard).

Todo
Use SWIG to generate the interface. Maybe?

9.12. Python Wrapper 49

khmer Documentation, Release 1.1

50 Chapter 9. Architecture and Design

CHAPTER 10

Miscellaneous implementation details

Partition IDs are “stored” in FASTA files as an integer in the last tab-separated field. Yeah, dumb, huh?

51

khmer Documentation, Release 1.1

52 Chapter 10. Miscellaneous implementation details

CHAPTER 11

Development miscellany

11.1 Third-party use

We ask that third parties who build upon the codebase to do so from a versioned release. This will help them determine
when bug fixes apply and generally make it easier to collaborate. If more intensive modifications happen then we
request that the repository is forked, again preferably from a version tag.

11.2 Build framework

‘make’ should build everything, including tests and “development” code.

11.3 Coding standards

All plain-text files should have line widths of 80 characters or less unless that is not supported for the particular file
format.

For C++, we use Todd Hoff’s coding standard, and astyle -A10 / “One True Brace Style” indentation and bracing.
Note: @CTB needs emacs settings that work for this.

Vim users may want to set the ARTISTIC_STYLE_OPTIONS shell variable to “-A10 –max-code-length=80” and run
‘:%!astyle‘ to reformat. The four space indentation can be set with:

set expandtab
set shiftwidth=4
set softtabstop=4

For Python, PEP 8 is our standard. The ‘pep8‘ and ‘autopep8‘ Makefile targets are helpful.

Code, scripts, and documentation must have its spelling checked. Vim users can run:

:setlocal spell spelllang=en_us

Use]s and [s to navigate between misspellings and z= to suggest a correctly spelled word. zg will add a word as a
good word.

GNU’s aspell can also be used to check the spelling in a single file:

aspell check --mode ccpp $filename

53

http://www.possibility.com/Cpp/CppCodingStandard.html
http://astyle.sourceforge.net/astyle.html
http://www.python.org/dev/peps/pep-0008/

khmer Documentation, Release 1.1

11.4 Code Review

Please read 11 Best Practices for Peer Code Review.

See also Code reviews: the lab meeting for code and the PyCogent coding guidelines.

11.5 Checklist

Copy and paste the following into a pull-request when it is ready for review:

- [] Is it mergable
- [] Did it pass the tests?
- [] If it introduces new functionality in scripts/ is it tested?

Check for code coverage.
- [] Is it well formatted? Look at ‘pep8‘/‘pylint‘, ‘cppcheck‘, and

‘make doc‘ output. Use ‘autopep8‘ and ‘astyle -A10 --max-code-length=80‘
if needed.

- [] Is it documented in the Changelog?
- [] Was spellcheck run on the source code and documentation after changes

were made?

11.6 git and github strategies

Still in the works, but read this.

Make a branch on ged-lab (preferred so others can contribute) or fork the repository and make a branch there.

Each piece or fix you are working on should have its own branch; make a pull- request to ged-lab/master to aid in code
review, testing, and feedback.

If you want your code integrated then it needs to be mergeable

Example pull request update using the command line:

1. Clone the source of the pull request (if needed) git clone git@github.com:mr-c/khmer.git

2. Checkout the source branch of the pull request git checkout my-pull-request

3. Pull in the destination of the pull request and resolve any conflicts git pull
git@github.com:ged-lab/khmer.git master

4. Push your update to the source of the pull request git push

5. Jenkins will automatically attempt to build and test your pull requests.

11.7 Testing

./setup.py nosetest is the canonical way to run the tests. This is what make test does.

11.8 Code coverage

Jenkins calculates code coverage for every build. Navigate to the results from the master node first to view the coverage
information.

54 Chapter 11. Development miscellany

http://smartbear.com/SmartBear/media/pdfs/WP-CC-11-Best-Practices-of-Peer-Code-Review.pdf
http://fperez.org/py4science/code_reviews.html
http://pycogent.org/coding_guidelines.html
http://scottchacon.com/2011/08/31/github-flow.html

khmer Documentation, Release 1.1

Code coverage should never go down and new functionality needs to be tested.

11.9 Pipelines

All khmer scripts used by a published recommended analysis pipeline must be included in scripts/ and meet the
standards therein implied.

11.10 Command line scripts

Python command-line scripts should use ‘-‘ instead of ‘_’ in the name. (Only filenames containing code for import
imported should use _.)

Please follow the command-line conventions used under scripts/. This includes most especially standardization of ‘-x’
to be hash table size, ‘-N’ to be number of hash tables, and ‘-k’ to always refer to the k-mer size.

Command line thoughts:

If a filename is required, typically UNIX commands don’t use a flag to specify it.

Also, positional arguments typically aren’t used with multiple files.

CTB’s overall philosophy is that new files, with new names, should be created as the result of filtering
etc.; this allows easy chaining of commands. We’re thinking about how best to allow override of this, e.g.

filter-abund.py <kh file> <filename> [-o <filename.keep>]

All code in scripts/ must have automated tests; see tests/test_scripts.py. Otherwise it belongs in sandbox/.

When files are overwritten, they should only be opened to be overwritten after the input files have been shown to exist.
That prevents stupid command like mistakes from trashing important files.

It would be nice to allow piping from one command to another where possible. But this seems complicated.

CTB: should we squash output files (overwrite them if they exist), or not? So far, leaning towards ‘not’, as that way
no one is surprised and loses their data.

A general error should be signaled by exit code 1 and success by 0. Linux supports exit codes from 0 to 255 where the
value 1 means a general error. An exit code of -1 will get converted to 255.

CLI reading:

http://stackoverflow.com/questions/1183876/what-are-the-best-practices-for-implementing-a-cli-tool-in-
perl

http://catb.org/esr/writings/taoup/html/ch11s06.html

http://figshare.com/articles/tutorial_pdf/643388

11.9. Pipelines 55

http://stackoverflow.com/questions/1183876/what-are-the-best-practices-for-implementing-a-cli-tool-in-perl
http://stackoverflow.com/questions/1183876/what-are-the-best-practices-for-implementing-a-cli-tool-in-perl
http://catb.org/esr/writings/taoup/html/ch11s06.html
http://figshare.com/articles/tutorial_pdf/643388

khmer Documentation, Release 1.1

11.11 Python / C integration

The Python extension that wraps the C++ core of khmer lives in khmer/_khmermodule.CC

This wrapper code is tedious and annoying so we use a static analysis tool to check for correctness.

https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html

Developers using Ubuntu Precise will want to install the gcc-4.6-plugin-dev package

Example usage:

CC="/home/mcrusoe/src/gcc-plugin-python/gcc-python-plugin/gcc-with-cpychecker
--maxtrans=512" python setup.py build_ext 2>&1 | less

False positives abound: ignore errors about the C++ standard library. This tool is primarily useful for reference count
checking, error-handling checking, and format string checking.

Errors to ignore: “Unhandled Python exception raised calling ‘execute’ method”, “AttributeError: ‘NoneType’ object
has no attribute ‘file”’

Warnings to address:

khmer/_khmermodule.cc:3109:1: note: this function is too complicated
for the reference-count checker to fully analyze: not all paths were
analyzed

Adjust –maxtrans and re-run.

khmer/_khmermodule.cc:2191:61: warning: Mismatching type in call to
Py_BuildValue with format code "i" [enabled by default]

argument 2 ("D.68937") had type
"long long unsigned int"

but was expecting
"int"

for format code "i"

See below for a format string cheatsheet One also benefits by matching C type with the function signature used later.

“I” for unsigned int “K” for unsigned long long a.k.a khmer::HashIntoType.

56 Chapter 11. Development miscellany

https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html

CHAPTER 12

Deploying the khmer project tools on Galaxy

We are developing the support for running normalize-by-median in Galaxy.

When this is mature we will make a Galaxy Tool Shed version available for easier installation.

12.1 Install the tools & tool description

If your installation uses a virtualenv be sure to activate it in your terminal before continuing.

pip install --no-clean khmer

Move to the tools directory in your Galaxy installation and copy in the tool definition file.:

cd tools
mkdir khmer
ln -s build/khmer/scripts/normalize-by-median.xml .

Add the following to your tool_conf.xml inside the <toolbox> tag:

<section id="khmer-protocols-extra" name="khmer protocols">
<tool file="khmer/normalize-by-median.xml" />
</section>

Then (re)start Galaxy.

12.2 Single Output Usage

For one or more files into a single file:

#. Choose ‘Normalize By Median’ from the ‘khmer protocols’ section of the ‘Tools’ menu.

#. Compatible files already uploaded to your Galaxy instance should be listed. If not then you may need to set their
datatype manually.

#. After selecting the input files specify if they are paired-interleaved or not.

#. Specify the sample type or show the advanced parameters to set the tablesize yourself. Consult Choosing table sizes
for khmer for assistance.

57

http://galaxyproject.org/
https://wiki.galaxyproject.org/Tool%20Shed
https://wiki.galaxyproject.org/Learn/Datatypes
https://wiki.galaxyproject.org/Learn/Datatypes

khmer Documentation, Release 1.1

58 Chapter 12. Deploying the khmer project tools on Galaxy

CHAPTER 13

Known Issues

Some users have reported that normalize-by-median.py will utilize more memory than it was configured for. This is
being investigated in https://github.com/ged-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one thread. For example, while using load-
into-counting.py. If you experience this then add “–threads=1” to your command line. This issue is being tracked in
https://github.com/ged-lab/khmer/issues/249

If your k-mer table is truncated on write, an error may not be reported; this is being tracked in https://github.com/ged-
lab/khmer/issues/443. However, khmer will now (correctly) fail when trying to read a truncated file (See #333).

Paired-end reads from Casava 1.8 currently require renaming for use in normalize-by-median and abund-filter when
used in paired mode. The integration of a fix for this is being tracked in https://github.com/ged-lab/khmer/issues/23

Some scripts only output FASTA even if given a FASTQ file. This issue is being tracked in https://github.com/ged-
lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and many threads. This issue is being tracked in
https://github.com/ged-lab/khmer/issues/75

59

https://github.com/ged-lab/khmer/issues/266
https://github.com/ged-lab/khmer/issues/249
https://github.com/ged-lab/khmer/issues/443
https://github.com/ged-lab/khmer/issues/443
https://github.com/ged-lab/khmer/issues/23
https://github.com/ged-lab/khmer/issues/46
https://github.com/ged-lab/khmer/issues/46
https://github.com/ged-lab/khmer/issues/75

khmer Documentation, Release 1.1

60 Chapter 13. Known Issues

CHAPTER 14

Releasing a new version of khmer

14.1 How to make a khmer release candidate

Michael R. Crusoe, Luiz Irber, and C. Titus Brown have all been release makers, following this checklist by MRC.

1. The below should be done in a clean checkout:

cd ‘mktemp -d‘
git clone git@github.com:ged-lab/khmer.git
cd khmer

2. (Optional) Check for updates to versioneer:

pip install versioneer
versioneer-installer

git diff

./setup.py versioneer
git diff
git commit -m -a "new version of versioneer.py"
or
git checkout -- versioneer.py khmer/_version.py khmer/__init__.py MANIFEST.in

3. Review the git logs since the last release and diffs (if needed) and ensure that the Changelog is up to date:

git log --minimal --patch ‘git describe --tags --always --abbrev=0‘..HEAD

4. Review the issue list for any new bugs that will not be fixed in this release. Add them to
doc/known-issues.txt

5. Verify that the build is clean: http://ci.ged.msu.edu/job/khmer-master/

6. Set your new version number and release candidate:

new_version=1.1
rc=rc3

and then tag the release candidate with the new version number prefixed by the letter ‘v’:

git tag v${new_version}-${rc}
git push --tags git@github.com:ged-lab/khmer.git

7. Test the release candidate. Bonus: repeat on Mac OS X:

61

http://ci.ged.msu.edu/job/khmer-master/

khmer Documentation, Release 1.1

cd ..
virtualenv testenv1
virtualenv testenv2
virtualenv testenv3
virtualenv testenv4
First we test the tag

cd testenv1
source bin/activate
git clone --depth 1 --branch v${new_version}-${rc} https://github.com/ged-lab/khmer.git
cd khmer
make install
make test
normalize-by-median.py --version # double-check version number

Secondly we test via pip

cd ../../testenv2
source bin/activate
pip install -U setuptools==3.4.1
pip install -e git+https://github.com/ged-lab/khmer.git@v${new_version}-${rc}#egg=khmer
cd src/khmer
make dist
make install
make test
normalize-by-median.py --version # double-check version number
cp dist/khmer*tar.gz ../../../testenv3/

Is the distribution in testenv2 complete enough to build another
functional distribution?

cd ../../../testenv3/
source bin/activate
pip install -U setuptools==3.4.1
pip install khmer*tar.gz
tar xzf khmer*tar.gz
cd khmer*
make dist
make test

8. Publish the new release on the testing PyPI server. You will need to change your PyPI credentials as documented
here: https://wiki.python.org/moin/TestPyPI. You may need to reregister:

python setup.py register --repository test

Now, upload the new release:

python setup.py sdist upload -r test

Test the PyPI release in a new virtualenv:

cd ../../testenv4
source bin/activate
pip install -U setuptools==3.4.1
pip install screed nose
pip install -i https://testpypi.python.org/pypi --pre --no-clean khmer
normalize-by-median.py --version 2>&1 | awk ’ { print $2 } ’
cd build/khmer
./setup.py nosetests

62 Chapter 14. Releasing a new version of khmer

https://wiki.python.org/moin/TestPyPI

khmer Documentation, Release 1.1

9. Do any final testing (BaTLab and/or acceptance tests).

10. Make sure any release notes are merged into doc/release-notes/.

14.2 How to make a final release

When you’ve got a thoroughly tested release candidate, cut a release like so:

1. Create the final tag and publish the new release on PyPI (requires an authorized account).:

cd ../../../khmer
git tag v${new_version}
python setup.py register sdist upload

2. Delete the release candidate tag and push the tag updates to github.:

git tag -d v${new_version}-${rc}
git push git@github.com:ged-lab/khmer.git
git push --tags git@github.com:ged-lab/khmer.git

3. Add the release on github, using the tag you just pushed. Name it ‘version X.Y.Z’, and copy and paste in the
release notes.

4. Make a binary wheel on OS X.:

virtualenv build
cd build
source bin/activate
pip install -U setuptools==3.4.1 wheel
pip install --no-clean khmer==${new_version}
cd build/khmer
./setup.py bdist_wheel upload

5. Update Read the Docs to point to the new version. Visit https://readthedocs.org/builds/khmer/ and ‘Build Ver-
sion: master’ to pick up the new tag. Once that build has finished check the “Activate” box next to the new
version at https://readthedocs.org/dashboard/khmer/versions/ under “Choose Active Versions”. Finally change
the default version at https://readthedocs.org/dashboard/khmer/advanced/ to the new version.

6. Delete any RC tags created:

git tag -d ${new_version}-${rc}
git push origin :refs/tags/${new_version}-${rc}

7. Tweet about the new release.

8. Send email including the release notes to khmer@lists.idyll.org and khmer-announce@lists.idyll.org

14.3 BaTLab testing

The UW-Madison Build and Test Lab provides the khmer project with a free cross-platform testing environment.

1. Connect to their head node:

ssh mcrusoe@submit-1.batlab.org

2. Move into the khmer directory and download a release from PyPI’s main server or the test PyPI server:

14.2. How to make a final release 63

https://readthedocs.org/builds/khmer/
https://readthedocs.org/dashboard/khmer/versions/
https://readthedocs.org/dashboard/khmer/advanced/
mailto:khmer@lists.idyll.org
mailto:khmer-announce@lists.idyll.org

khmer Documentation, Release 1.1

cd khmer/
wget https://testpypi.python.org/packages/source/k/khmer/khmer-1.0.1-rc3.tar.gz
vim khmer-v1.0.inputs # change the ’scp_file’ to point to the release
vim khmer-v1.0.run-spec # change ’project_version’ at bottom
nmi_submit khmer-v1.0.run-spec

14.4 Setuptools Bootstrap

ez_setup.py is from https://bitbucket.org/pypa/setuptools/raw/bootstrap/

Before major releases it should be examined to see if there are new versions available and if the change would be
useful

14.5 Versioning Explanation

Versioneer, from https://github.com/warner/python-versioneer, is used to determine the version number and
is called by Setuptools and Sphinx. See the files versioneer.py, the top of khmer/__init__.py,
khmer/_version.py, setup.py, and doc/conf.py for the implementation.

The version number is determined through several methods: see https://github.com/warner/python-versioneer#version-
identifiers

If the source tree is from a git checkout then the version number is derived
by git describe --tags --dirty --always. This will be in the format
${tagVersion}-${commits_ahead}-${revision_id}-${isDirty}. Example:
v0.6.1-18-g8a9e430-dirty

If from an unpacked tarball then the name of the directory is queried.

Lacking either of the two git-archive will record the version number at the top of khmer/_version.py via the
$Format:%d$ and $Format:%H$ placeholders enabled by the “export-subst” entry in .gitattributes.

Non source distributions will have a customized khmer/_version.py that contains hard-coded version strings.
(see build/*/khmer/_version.py after a python setup.py build for an example)

ez_setup.py bootstraps Setuptools (if needed) by downloading and installing an appropriate version

64 Chapter 14. Releasing a new version of khmer

https://bitbucket.org/pypa/setuptools/raw/bootstrap/
https://github.com/warner/python-versioneer
https://github.com/warner/python-versioneer#version-identifiers
https://github.com/warner/python-versioneer#version-identifiers

CHAPTER 15

Crazy ideas

1. A JavaScript preprocessor to do things like count k-mers (HLL), and do diginorm on data as uploaded to server.

Inspired by a paper that Titus reviewed for PLoS One; not yet published.

65

khmer Documentation, Release 1.1

66 Chapter 15. Crazy ideas

CHAPTER 16

Contributors and Acknowledgements

khmer is a product of the GED lab at Michigan State University,

http://ged.msu.edu/

—

C. Titus Brown <ctb@msu.edu> wrote the initial ktable and hashtable implementations, as well as hashbits and count-
ing_hash.

Jason Pell implemented many of the C++ k-mer filtering functions.

Qingpeng contributed code to do unique k-mer counting.

Adina Howe, Rosangela Canino-Koning, and Arend Hintze contributed significantly to discussions of approaches and
algorithms; Adina wrote a number of scripts.

Jared T. Simpson (University of Cambridge, Sanger Institute) contributed paired-end support for digital normalization.

Eric McDonald thoroughly revised many aspects of the code base, made much of the codebase thread safe, and
otherwise improved performance dramatically.

Michael R. Crusoe is the new maintainer of khmer.

MRC 2014-05-07

67

http://ged.msu.edu/
mailto:ctb@msu.edu

khmer Documentation, Release 1.1

68 Chapter 16. Contributors and Acknowledgements

CHAPTER 17

An incomplete bibliography of papers using khmer

17.1 Digital normalization

Multiple Single-Cell Genomes Provide Insight into Functions of Uncultured Deltaproteobacteria in the Human Oral
Cavity. Campbell et al., PLoS One, 2013, doi:10.1371/journal.pone.0059361. [paper link]

Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host
from Obsidian Pool, Yellowstone National Park. Podar et al., Biology Direct, 2013 doi:10.1186/1745-6150-8-9. [
paper link]

69

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0059361
http://www.biology-direct.com/content/8/1/9/abstract

khmer Documentation, Release 1.1

70 Chapter 17. An incomplete bibliography of papers using khmer

CHAPTER 18

License

Copyright (c) 2010-2014, Michigan State University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the Michigan State University nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

71

khmer Documentation, Release 1.1

72 Chapter 18. License

CHAPTER 19

Indices and tables

• genindex

• modindex

• search

73

khmer Documentation, Release 1.1

74 Chapter 19. Indices and tables

Python Module Index

k
khmer, 39

75

khmer Documentation, Release 1.1

76 Python Module Index

Index

Symbols
–cutoff <int>, -C <int>

filter-abund-single.py command line option, 17
filter-abund.py command line option, 16

–keep-subsets
do-partition.py command line option, 19
merge-partition.py command line option, 21

–ksize <int>, -k <int>
abundance-dist-single.py command line option, 15
annotate-partitions.py command line option, 21
count-overlap.py command line option, 18
do-partition.py command line option, 19
filter-abund-single.py command line option, 17
filter-abund.py command line option, 16
filter-stoptags.py command line option, 23
load-graph.py command line option, 20
load-into-counting.py command line option, 14
make-initial-stoptags.py command line option, 22
merge-partition.py command line option, 21
normalize-by-median.py command line option, 24

–max-size <int>, -X <int>
extract-partitions.py command line option, 22

–min-partition-size <int>, -m <int>
extract-partitions.py command line option, 22

–min-tablesize <float>, -x <float>
abundance-dist-single.py command line option, 15
count-overlap.py command line option, 18
do-partition.py command line option, 19
filter-abund-single.py command line option, 17
filter-abund.py command line option, 16
find-knots.py command line option, 23
load-graph.py command line option, 20
load-into-counting.py command line option, 14
make-initial-stoptags.py command line option, 22
normalize-by-median.py command line option, 24

–n_tables <int>, -N <int>
abundance-dist-single.py command line option, 15
count-overlap.py command line option, 18
do-partition.py command line option, 19
filter-abund-single.py command line option, 17

filter-abund.py command line option, 16
find-knots.py command line option, 23
load-graph.py command line option, 20
load-into-counting.py command line option, 14
make-initial-stoptags.py command line option, 22
normalize-by-median.py command line option, 24

–no-big-traverse
do-partition.py command line option, 19
partition-graph.py command line option, 20

–no-build-tagset, -n
load-graph.py command line option, 20

–no-output-groups, -n
extract-partitions.py command line option, 22

–normalize-to <int>, -Z <int>
filter-abund.py command line option, 16

–output-unassigned, -U
extract-partitions.py command line option, 22

–report-total-kmers, -t
abundance-dist-single.py command line option, 15
filter-abund-single.py command line option, 17
load-graph.py command line option, 20
load-into-counting.py command line option, 14
normalize-by-median.py command line option, 24

–save-on-failure
normalize-by-median.py command line option, 24

–savetable <filename>
abundance-dist-single.py command line option, 15
filter-abund-single.py command line option, 17

–stoptags <filename>, -S <filename>
make-initial-stoptags.py command line option, 22
partition-graph.py command line option, 20

–subset-size <float>, -s <float>
do-partition.py command line option, 19
make-initial-stoptags.py command line option, 22
partition-graph.py command line option, 20

–threads <int>, -T <int>
abundance-dist-single.py command line option, 15
filter-abund-single.py command line option, 17
filter-abund.py command line option, 16
load-graph.py command line option, 20
load-into-counting.py command line option, 14

77

khmer Documentation, Release 1.1

partition-graph.py command line option, 20
–threads, -T

do-partition.py command line option, 19
–variable-coverage, -V

filter-abund.py command line option, 16
–version

abundance-dist-single.py command line option, 15
abundance-dist.py command line option, 14
annotate-partitions.py command line option, 21
count-median.py command line option, 18
count-overlap.py command line option, 18
do-partition.py command line option, 19
extract-paired-reads.py command line option, 25
extract-partitions.py command line option, 22
filter-abund-single.py command line option, 17
filter-abund.py command line option, 16
filter-stoptags.py command line option, 23
find-knots.py command line option, 23
interleave-reads.py command line option, 26
load-graph.py command line option, 19
load-into-counting.py command line option, 13
make-initial-stoptags.py command line option, 22
merge-partition.py command line option, 21
normalize-by-median.py command line option, 24
partition-graph.py command line option, 20
sample-reads-randomly.py command line option, 27
split-paired-reads.py command line option, 27

-C <int>, –cutoff <int>
normalize-by-median.py command line option, 24

-M <int>, –max_reads <int>
sample-reads-randomly.py command line option, 27

-N <int>, –num_reads <int>
sample-reads-randomly.py command line option, 27

-R <filename>, –report <filename>
normalize-by-median.py command line option, 24

-R <int>, –random-seed <int>
sample-reads-randomly.py command line option, 27

-S <int>, –samples <int>
sample-reads-randomly.py command line option, 27

-b, –no-bigcount
abundance-dist-single.py command line option, 15
load-into-counting.py command line option, 14

-d <int>, –dump-frequency <int>
normalize-by-median.py command line option, 24

-f, –fault-tolerant
normalize-by-median.py command line option, 24

-h, –help
abundance-dist-single.py command line option, 15
abundance-dist.py command line option, 14
annotate-partitions.py command line option, 21
count-median.py command line option, 17
count-overlap.py command line option, 18
do-partition.py command line option, 19
extract-long-sequences.py command line option, 25

extract-paired-reads.py command line option, 25
extract-partitions.py command line option, 21
fastq-to-fasta.py command line option, 26
filter-abund-single.py command line option, 17
filter-abund.py command line option, 16
filter-stoptags.py command line option, 23
find-knots.py command line option, 23
interleave-reads.py command line option, 26
load-graph.py command line option, 19
load-into-counting.py command line option, 13
make-initial-stoptags.py command line option, 22
merge-partition.py command line option, 20
normalize-by-median.py command line option, 24
partition-graph.py command line option, 20
sample-reads-randomly.py command line option, 27
split-paired-reads.py command line option, 27

-l <filename>, –loadtable <filename>
normalize-by-median.py command line option, 24

-l <int>, –length <int>
extract-long-sequences.py command line option, 25

-n, –n_keep
fastq-to-fasta.py command line option, 26

-o <filename>, –out <filename>
normalize-by-median.py command line option, 24

-o <filename>, –output <filename>
interleave-reads.py command line option, 26

-o <optional_output_filename>, –out <op-
tional_output_filename>

filter-abund.py command line option, 16
-o <output_file>, –output <output_file>

sample-reads-randomly.py command line option, 27
-o, –output

extract-long-sequences.py command line option, 25
fastq-to-fasta.py command line option, 26

-p, –paired
normalize-by-median.py command line option, 24

-q, –quiet
abundance-dist-single.py command line option, 15
count-overlap.py command line option, 18
do-partition.py command line option, 19
filter-abund-single.py command line option, 17
filter-abund.py command line option, 16
load-graph.py command line option, 19
load-into-counting.py command line option, 14
make-initial-stoptags.py command line option, 22
normalize-by-median.py command line option, 24

-s <filename>, –savetable <filename>
normalize-by-median.py command line option, 24

-s, –squash
abundance-dist-single.py command line option, 15
abundance-dist.py command line option, 14

-z, –no-zero
abundance-dist-single.py command line option, 15
abundance-dist.py command line option, 14

78 Index

khmer Documentation, Release 1.1

A
abundance-dist-single.py command line option

–ksize <int>, -k <int>, 15
–min-tablesize <float>, -x <float>, 15
–n_tables <int>, -N <int>, 15
–report-total-kmers, -t, 15
–savetable <filename>, 15
–threads <int>, -T <int>, 15
–version, 15
-b, –no-bigcount, 15
-h, –help, 15
-q, –quiet, 15
-s, –squash, 15
-z, –no-zero, 15
input_sequence_filename, 15
output_histogram_filename, 15

abundance-dist.py command line option
–version, 14
-h, –help, 14
-s, –squash, 14
-z, –no-zero, 14
input_counting_table_filename, 14
input_sequence_filename, 14
output_histogram_filename, 14

accuracy (khmer.Read attribute), 46
annotate-partitions.py command line option

–ksize <int>, -k <int>, 21
–version, 21
-h, –help, 21
graphbase, 21
input_sequence_filename, 21

annotations (khmer.Read attribute), 46

B
basename

partition-graph.py command line option, 20
Bz2StreamReader (C++ class), 42

C
CacheManager (C++ class), 44
CacheManager::get_bytes (C++ function), 45
CacheManager::has_more_data (C++ function), 45
CacheManager::split_at (C++ function), 45
CacheManagerSegment (C++ class), 44
CacheManger::_get_segment (C++ function), 44
Config (C++ class), 40
Config::get_number_of_threads (C++ function), 40
Config::get_reads_input_buffer_size (C++ function), 40
Config::set_number_of_threads (C++ function), 40
Config::set_reads_input_buffer_size (C++ function), 40
consume_fasta_and_tag_with_reads_parser()

(khmer.new_counting_hash method), 48
consume_fasta_with_reads_parser()

(khmer.new_hashtable method), 48

count-median.py command line option
–version, 18
-h, –help, 17
input_counting_table_filename, 17
input_sequence_filename, 17
output_summary_filename, 17

count-overlap.py command line option
–ksize <int>, -k <int>, 18
–min-tablesize <float>, -x <float>, 18
–n_tables <int>, -N <int>, 18
–version, 18
-h, –help, 18
-q, –quiet, 18
input_presence_table_filename, 18
input_sequence_filename, 18
output_report_filename, 18

D
do-partition.py command line option

–keep-subsets, 19
–ksize <int>, -k <int>, 19
–min-tablesize <float>, -x <float>, 19
–n_tables <int>, -N <int>, 19
–no-big-traverse, 19
–subset-size <float>, -s <float>, 19
–threads, -T, 19
–version, 19
-h, –help, 19
-q, –quiet, 19
graphbase, 18
input_sequence_filename, 19

E
extract-long-sequences.py command line option

-h, –help, 25
-l <int>, –length <int>, 25
-o, –output, 25
input_filenames, 25

extract-paired-reads.py command line option
–version, 25
-h, –help, 25
infile, 25

extract-partitions.py command line option
–max-size <int>, -X <int>, 22
–min-partition-size <int>, -m <int>, 22
–no-output-groups, -n, 22
–output-unassigned, -U, 22
–version, 22
-h, –help, 21
input_partition_filename, 21
output_filename_prefix, 21

F
FastaParser (C++ class), 46

Index 79

khmer Documentation, Release 1.1

fastq-to-fasta.py command line option
-h, –help, 26
-n, –n_keep, 26
-o, –output, 26
input_sequence, 26

FastqParser (C++ class), 46
filenames

sample-reads-randomly.py command line option, 27
filter-abund-single.py command line option

–cutoff <int>, -C <int>, 17
–ksize <int>, -k <int>, 17
–min-tablesize <float>, -x <float>, 17
–n_tables <int>, -N <int>, 17
–report-total-kmers, -t, 17
–savetable <filename>, 17
–threads <int>, -T <int>, 17
–version, 17
-h, –help, 17
-q, –quiet, 17
input_sequence_filename, 17

filter-abund.py command line option
–cutoff <int>, -C <int>, 16
–ksize <int>, -k <int>, 16
–min-tablesize <float>, -x <float>, 16
–n_tables <int>, -N <int>, 16
–normalize-to <int>, -Z <int>, 16
–threads <int>, -T <int>, 16
–variable-coverage, -V, 16
–version, 16
-h, –help, 16
-o <optional_output_filename>, –out <op-

tional_output_filename>, 16
-q, –quiet, 16
input_presence_table_filename, 16
input_sequence_filename, 16

filter-stoptags.py command line option
–ksize <int>, -k <int>, 23
–version, 23
-h, –help, 23
input_sequence_filename, 23
input_stoptags_filename, 23

find-knots.py command line option
–min-tablesize <float>, -x <float>, 23
–n_tables <int>, -N <int>, 23
–version, 23
-h, –help, 23
graphbase, 23

G
get_active_config (C++ function), 40
get_config() (in module khmer), 40
graphbase

annotate-partitions.py command line option, 21
do-partition.py command line option, 18

find-knots.py command line option, 23
make-initial-stoptags.py command line option, 22
merge-partition.py command line option, 20

GzStreamReader (C++ class), 42

H
Hashbits (C++ class), 47
Hashbits::consume_fasta_and_tag (C++ function), 47
Hasher (C++ class), 48
Hashtable (C++ class), 47
Hashtable::consume_fasta (C++ function), 47

I
infile

extract-paired-reads.py command line option, 25
split-paired-reads.py command line option, 27

infiles
interleave-reads.py command line option, 26

input_counting_table_filename
abundance-dist.py command line option, 14
count-median.py command line option, 17

input_filenames
extract-long-sequences.py command line option, 25

input_partition_filename
extract-partitions.py command line option, 21

input_presence_table_filename
count-overlap.py command line option, 18
filter-abund.py command line option, 16

input_sequence
fastq-to-fasta.py command line option, 26

input_sequence_filename
abundance-dist-single.py command line option, 15
abundance-dist.py command line option, 14
annotate-partitions.py command line option, 21
count-median.py command line option, 17
count-overlap.py command line option, 18
do-partition.py command line option, 19
filter-abund-single.py command line option, 17
filter-abund.py command line option, 16
filter-stoptags.py command line option, 23
load-graph.py command line option, 19
load-into-counting.py command line option, 13
normalize-by-median.py command line option, 24

input_stoptags_filename
filter-stoptags.py command line option, 23

interleave-reads.py command line option
–version, 26
-h, –help, 26
-o <filename>, –output <filename>, 26
infiles, 26

IParser (C++ class), 46
IParser::get_parser (C++ function), 46
IParser::imprint_next_read (C++ function), 46
IParser::imprint_next_read_pair (C++ function), 46

80 Index

khmer Documentation, Release 1.1

IParser::is_complete (C++ function), 46
IPerformanceMetrics (C++ class), 41
IPerformanceMetrics::accumulate_timer_deltas (C++

function), 42
IPerformanceMetrics::start_timers (C++ function), 42
IPerformanceMetrics::stop_timers (C++ function), 42
IStreamReader (C++ class), 42
iter_read_pairs() (khmer.ReadParser method), 47

K
khmer (module), 39

L
load-graph.py command line option

–ksize <int>, -k <int>, 20
–min-tablesize <float>, -x <float>, 20
–n_tables <int>, -N <int>, 20
–no-build-tagset, -n, 20
–report-total-kmers, -t, 20
–threads <int>, -T <int>, 20
–version, 19
-h, –help, 19
-q, –quiet, 19
input_sequence_filename, 19
output_presence_table_filename, 19

load-into-counting.py command line option
–ksize <int>, -k <int>, 14
–min-tablesize <float>, -x <float>, 14
–n_tables <int>, -N <int>, 14
–report-total-kmers, -t, 14
–threads <int>, -T <int>, 14
–version, 13
-b, –no-bigcount, 14
-h, –help, 13
-q, –quiet, 14
input_sequence_filename, 13
output_countingtable_filename, 13

M
make-initial-stoptags.py command line option

–ksize <int>, -k <int>, 22
–min-tablesize <float>, -x <float>, 22
–n_tables <int>, -N <int>, 22
–stoptags <filename>, -S <filename>, 22
–subset-size <float>, -s <float>, 22
–version, 22
-h, –help, 22
-q, –quiet, 22
graphbase, 22

merge-partition.py command line option
–keep-subsets, 21
–ksize <int>, -k <int>, 21
–version, 21
-h, –help, 20

graphbase, 20

N
name (khmer.Read attribute), 46
normalize-by-median.py command line option

–ksize <int>, -k <int>, 24
–min-tablesize <float>, -x <float>, 24
–n_tables <int>, -N <int>, 24
–report-total-kmers, -t, 24
–save-on-failure, 24
–version, 24
-C <int>, –cutoff <int>, 24
-R <filename>, –report <filename>, 24
-d <int>, –dump-frequency <int>, 24
-f, –fault-tolerant, 24
-h, –help, 24
-l <filename>, –loadtable <filename>, 24
-o <filename>, –out <filename>, 24
-p, –paired, 24
-q, –quiet, 24
-s <filename>, –savetable <filename>, 24
input_sequence_filename, 24

O
output_countingtable_filename

load-into-counting.py command line option, 13
output_filename_prefix

extract-partitions.py command line option, 21
output_histogram_filename

abundance-dist-single.py command line option, 15
abundance-dist.py command line option, 14

output_presence_table_filename
load-graph.py command line option, 19

output_report_filename
count-overlap.py command line option, 18

output_summary_filename
count-median.py command line option, 17

P
ParserState (C++ class), 46
partition-graph.py command line option

–no-big-traverse, 20
–stoptags <filename>, -S <filename>, 20
–subset-size <float>, -s <float>, 20
–threads <int>, -T <int>, 20
–version, 20
-h, –help, 20
basename, 20

R
RawStreamReader (C++ class), 42
Read (C++ class), 45
Read (class in khmer), 45

Index 81

khmer Documentation, Release 1.1

read_into_cache (C++ function), 42
ReadParser (class in khmer), 47

S
sample-reads-randomly.py command line option

–version, 27
-M <int>, –max_reads <int>, 27
-N <int>, –num_reads <int>, 27
-R <int>, –random-seed <int>, 27
-S <int>, –samples <int>, 27
-h, –help, 27
-o <output_file>, –output <output_file>, 27
filenames, 27

sequence (khmer.Read attribute), 46
set_active_config (C++ function), 40
set_config() (in module khmer), 40
split-paired-reads.py command line option

–version, 27
-h, –help, 27
infile, 27

T
ThreadIDMap (C++ class), 44
ThreadIDMap::get_thread_id (C++ function), 44
TraceLogger (C++ class), 41
TraceLogger::operator() (C++ function), 41

82 Index

	Introduction to khmer
	Introduction
	Using khmer
	Practical considerations
	Copyright and license

	Installing and running khmer
	Build requirements
	Latest stable release
	Latest development branch

	A few examples
	STAMPS data set

	An assembly handbook for khmer - rough draft
	Authors
	Introduction
	Asking for help
	Preparing your sequences
	Picking k-mer table sizes and k parameters
	Genome assembly, including MDA samples and highly polymorphic genomes
	mRNAseq assembly
	Metagenome assembly
	Metatranscriptome assembly
	Preprocessing Illumina for other applications
	Quantifying mRNAseq or metagenomes assembled with digital normalization
	Philosophy of digital normalization
	Iterative and independent normalization
	Validating and comparing assemblies

	khmer's command-line interface
	k-mer counting and abundance filtering
	Partitioning
	Digital normalization
	Read handling: interleaving, splitting, etc.

	Blog posts and additional documentation
	Hashtable and filtering
	Illumina read abundance profiles

	Choosing table sizes for khmer
	The really short version
	The short version
	The real full version

	Partitioning large data sets (50m+ reads)
	Basic partitioning
	Artifact removal
	Running on an example data set
	Post-partitioning assembly

	Architecture and Design
	Overview
	Namespace
	Configuration Objects
	Trace Loggers
	Performance Metrics
	Input Data Pumps
	Thread Identity Maps
	Cache Managers
	Reads and Read Pairs
	Read Parsers
	k-mer Counters and Bloom Filters
	Python Wrapper

	Miscellaneous implementation details
	Development miscellany
	Third-party use
	Build framework
	Coding standards
	Code Review
	Checklist
	git and github strategies
	Testing
	Code coverage
	Pipelines
	Command line scripts
	Python / C integration

	Deploying the khmer project tools on Galaxy
	Install the tools & tool description
	Single Output Usage

	Known Issues
	Releasing a new version of khmer
	How to make a khmer release candidate
	How to make a final release
	BaTLab testing
	Setuptools Bootstrap
	Versioning Explanation

	Crazy ideas
	Contributors and Acknowledgements
	An incomplete bibliography of papers using khmer
	Digital normalization

	License
	Indices and tables
	Python Module Index

