

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	khmer 1.0 documentation

khmer – k-mer counting & filtering FTW

	Authors:	Michael R. Crusoe, Greg Edvenson, Jordan Fish, Adina Howe,
Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy, Humberto
Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown

	Contact:	khmer-project@idyll.org

	License:	BSD

khmer is a library and suite of command line tools for working with
DNA sequence. It is primarily aimed at short-read sequencing data
such as that produced by the Illumina platform. khmer takes a k-mer-centric
approach to sequence analysis, hence the name.

There are two mailing lists dedicated to khmer, an announcements-only list and
a discussion list. To search their archives and sign-up for them, please visit
the following URLs:

	Discussion: http://lists.idyll.org/listinfo/khmer

	Announcements: http://lists.idyll.org/listinfo/khmer-announce

The archives for the khmer list are available at: http://lists.idyll.org/pipermail/khmer/

khmer development has largely been supported by AFRI Competitive Grant
no. 2010-65205-20361 [http://ged.msu.edu/downloads/2009-usda-vertex.pdf] from the USDA
NIFA, and is now funded by the National Human Genome Research
Institute of the National Institutes of Health under Award Number
R01HG007513 [http://ged.msu.edu/downloads/2012-bigdata-nsf.pdf],
both to C. Titus Brown.

Contents:

	Introduction to khmer

	Installing and running khmer

	A few examples

	An assembly handbook for khmer - rough draft

	khmer’s command-line interface

	Blog posts and additional documentation

	Choosing table sizes for khmer

	Partitioning large data sets (50m+ reads)

	Architecture and Design

	Miscellaneous implementation details

	Development miscellany

	Deploying the khmer project tools on Galaxy

	Known Issues

	How to make a khmer release

	Crazy ideas

	Contributors and Acknowledgements

	An incomplete bibliography of papers using khmer

	License

Indices and tables

	Index

	Module Index

	Search Page

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 khmer – k-mer counting & filtering FTW
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Introduction to khmer

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Introduction to khmer

Introduction

khmer is a library and toolkit for doing k-mer-based dataset analysis
and transformations. Our focus in developing it has been on scaling
assembly of metagenomes and mRNA.

khmer can be used for a number of transformations, include inexact
transformations (abundance filtering and error trimming) and exact
transformations (graphsize filtering, to throw away disconnected
reads; and partitioning, to split reads into disjoint sets). Of
these, only partitioning is not constant memory. In all cases, the
memory required for assembly with Velvet or another de Bruijn graph
assembler will be more than the memory required to use our
software. Our software will not increase the memory required for
Velvet, either, although we may not be able to decrease the memory
required for assembly for every data set.

Most of khmer relies on an underlying probabilistic data structure
known as a Bloom filter [http://en.wikipedia.org/wiki/Bloom_filter] (also see MinCount Sketch [http://www.eecs.harvard.edu/~michaelm/CS222/countmin.pdf]), which is essentially a set of
hash tables, each of different size, with no collision detection.
These hash tables are used to store the presence of specific k-mers
and/or their count. The lack of collision detection means that
the Bloom filter may report a k-mer as being “present” when it is
not, in fact, in the data set; however, it will never incorrectly
report a k-mer as being absent when it is present. This one-sided
error makes the Bloom filter very useful for certain kinds of
operations.

khmer is also independent of K, and currently works for K <= 32. We
will be integrating code for up to K=64 soon.

khmer is implemented in C++ with a Python wrapper, which is what
all of the scripts use.

Using khmer

khmer comes “out of the box” with a number of scripts that make it
immediately useful for a few different operations, including:

	normalizing read coverage (“digital normalization”)

	dividing reads into disjoint sets that do not connect (“partitioning”)

	eliminating reads that will not be used by a de Bruijn graph assembler;

	removing reads with low- or high-abundance k-mers;

	trimming reads of certain kinds of sequencing errors;

	counting k-mers and estimating data set coverage based on k-mer counts;

	running Velvet and calculating assembly statistics;

	optimizing assemblies on various parameters;

	converting FASTA to FASTQ;

and a few other random functions.

Practical considerations

The most important thing to think about when using khmer is whether or
not the transformation or filter you’re applying is appropriate for
the data you’re trying to assemble. Two of the most powerful
operations available in khmer, graphsize filtering and graph
partitioning, only make sense for assembly datasets with many
theoretically unconnected components. This is typical of metagenomic
data sets.

The second most important consideration is memory usage. The
effectiveness of all of the Bloom filter-based functions (which is
everything interesting in khmer!) depends critically on having enough
memory to do a good job. See Choosing table sizes for khmer for more
information.

Copyright and license

Portions of khmer are Copyright California Institute of Technology,
where the exact counting code was first developed; the remainder is
Copyright Michigan State University. The code is freely available for
use and re-use under the BSD License.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Introduction to khmer
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Installing and running khmer

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Installing and running khmer

You’ll need Python 2.7+ and internet access.

The khmer project currently works with Python 2.6 but we target Python 2.7+.

Build requirements

OS X

If you just want to use the khmer project tools and not develop them then
skip to step 4.

	Install Xcode from the Mac App Store (requires root) [https://developer.apple.com/xcode/].

	Register as an Apple Developer [https://developer.apple.com/register].

	Install the Xcode command-line tools: Xcode -> preferences ->
Downloads -> Command Line Tools (requires root).

	From a terminal install virtualenv. You’ll need the URL of the latest virtualenv
release [https://pypi.python.org/packages/source/v/virtualenv/].

curl -O https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.x.y.tar.gz
tar xzf virtualenv*
cd virtualenv-*; python virtualenv.py ../khmerEnv; cd ..
source khmerEnv/bin/activate

Linux

	Install the python development environment, virtualenv, pip, and gcc.

	On recent Debian and Ubuntu this can be done with:

sudo apt-get install python2.7-dev python-virtualenv python-pip gcc

	For RHEL6:

sudo yum install -y python-devel python-pip git gcc gcc-c++ make
sudo pip install virtualenv

	Create a virtualenv and activate it:

cd a/writeable/directory/
virtualenv khmerEnv
source khmerEnv/bin/activate

Linux users without root access can try step 4 from the OS X instructions above.

Latest stable release

	Check your pip version:

pip --version

	Use pip to download, build, and install khmer and its dependencies.

	If you’re running version 1.5 or greater of pip:

pip install --allow-external argparse khmer

	For pip version 1.4.1 and earlier:

pip install khmer

	The scripts are now in the env/bin directory and ready for your
use. You can directly use them by name, see khmer’s command-line interface.

	When returning to khmer after installing it you will need to
reactivate the virtualenv first:

source khmerEnv/bin/activate

Latest development branch

Repeat the above but modify the pip install line.

	If you’re running version 1.5 or greater of pip then:

pip install --allow-external argparse git+https://github.com/ged-lab/khmer.git@master#egg=khmer

	For pip version 1.4.1 and earlier:

pip install git+https://github.com/ged-lab/khmer.git@master#egg=khmer

You can change master in the above command to the name of another branch.

Run the tests

If you’re running a version of pip less than 1.4 and you want to run the
tests then you should upgrade pip:

pip install --user --upgrade pip

Repeat the appropriate installation procedure from above but add “–no-clean”
to the pip invocation.

The source will be in the khmerEnv/build/khmer directory. Run
make test there.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Installing and running khmer
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 A few examples

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

A few examples

See the ‘examples’ subdirectory for complete examples.

STAMPS data set

The ‘stamps’ data set is a fake metagenome-like data set containing
two species, mixed at a 10:1 ratio. The source genomes are
in ‘data/stamps-genomes.fa’. The reads file is in ‘data/stamps-reads.fa.gz’,
and consists of 100-base reads with a 1% error rate.

The example shows how to construct k-mer abundance histograms, as well
as the effect of digital normalization and partitioning on the k-mer
abundance distribution.

See the script for running everything [https://github.com/ged-lab/khmer/blob/master/examples/stamps/do.sh]
and the IPython Notebook [http://nbviewer.ipython.org/urls/raw.github.com/ged-lab/khmer/master/examples/stamps%2520k-mer%2520distributions.ipynb].

For an overall discussion and some slides to explain what’s going on,
visit the Web site for a 2013 HMP metagenome assembly webinar that
Titus Brown gave [http://ged.msu.edu/angus/2013-hmp-assembly-webinar/exploring-stamps-data.html].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 A few examples
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 An assembly handbook for khmer - rough draft

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

An assembly handbook for khmer - rough draft

	date:	2012-11-2

An increasing number of people are asking about using our assembly
approaches for things that we haven’t yet written (or posted) papers
about. Moreover, our assembly strategies themselves are also under
constant evolution as we do more research and find ever-wider
applicability of our approaches.

Note, this is an exact copy of Titus’ blog post, here [http://ivory.idyll.org/blog/an-assembly-handbook-for-khmer.html]
– go check the bottom of that for comments.

Authors

This handbook distills the cumulative expertise of Adina Howe, Titus
Brown, Erich Schwarz, Jason Pell, Camille Scott, Elijah Lowe, Kanchan
Pavangadkar, Likit Preeyanon, and others.

Introduction

khmer is a general framework for low-memory k-mer counting, filtering,
and advanced trickery [http://khmer.readthedocs.org/en/latest/].

The latest source is always available here [https://github.com/ged-lab/khmer].

khmer is really focused on short read data, and, more specifically,
Illumina, because that’s where we have a too-much-data problem.
However, a lot of the prescriptions below can be adapted to longer
read technologies such as 454 and Ion Torrent without much effort.

Don’t try to use our k-mer approaches with PacBio – the error rate is
too high.

There are currently two papers available on khmer: the partitioning
paper [http://pnas.org/content/early/2012/07/25/1121464109.abstract] and
the digital normalization paper [http://arxiv.org/abs/1203.4802].

There are many blog posts about this stuff on Titus Brown’s blog [http://ivory.idyll.org/blog/]. We will try to link them in where
appropriate.

Asking for help

There’s some documentation here:

https://khmer.readthedocs.org/en/latest/

There’s also a khmer mailing list at lists.idyll.orgm that you can use to
get help with khmer. To sign up, just go to
the khmer lists page [http://lists.idyll.org/listinfo/khmer] and
subscribe.

Preparing your sequences

Do all the quality filtering, trimming, etc. that you think you should do.

Most of the khmer tools currently work “out of the box” on interleaved
paired-end data. Ask on the list if you’re not sure.

All of our scripts will take in .fq or .fastq files as FASTQ, and all
other files as FASTA. gzip files are always accepted. Let us know if
not; that’s a bug!

Most scripts output fasta, and some mangle headers. Sorry. We’re
working on outputting FASTQ for FASTQ input, and removing any header
mangling.

Picking k-mer table sizes and k parameters

For k-mer table sizes, read Choosing table sizes for khmer

For k-mer sizes, we recommend k=20 for digital normalization and k=32
for partitioning; then assemble with a variety of k parameters.

Genome assembly, including MDA samples and highly polymorphic genomes

	Apply digital normalization as follows.

Broadly, normalize each insert library separately, in the following way:

For high-coverage libraries (> ~50x), do three-pass digital
normalization: run normalize-by-median to C=20 and then run
filter-abund with C=1. Now split out the remaining
paired-end/interleaved and single-end reads using
strip-and-split-for-assembly, and normalize-by-median the pe and se
files to C=5 (in that order).

For low-coverage libraries (< 50x) do single-pass digital normalization:
run normalize-by-median to C=10.

2. Extract any remaining paired-end reads and lump remaining orphan
reads into singletons using strip-and-split-for-assembly

3. Then assemble as normal, with appropriate insert size specs
etc. for the paired end reads.

You can read about this process in the digital normalization paper [http://arxiv.org/abs/1203.4802].

mRNAseq assembly

	Apply single-pass digital normalization.

Run normalize-by-median to C=20.

2. Extract any remaining paired-end reads and lump remaining orphan
reads into singletons using strip-and-split-for-assembly

3. Then assemble as normal, with appropriate insert size specs
etc. for the paired end reads.

You can read about this process in the digital normalization paper [http://arxiv.org/abs/1203.4802].

Metagenome assembly

	Apply single-pass digital normalization.

Run normalize-by-median to C=20 (we’ve also found C=10 works fine).

2. Run filter-below-abund with C=50 (if you diginormed to C=10) or
C=100 (if you diginormed to C=20);

	Partition reads with load-graph, etc. etc.

4. Assemble groups as normal, extracting paired-end reads and lumping
remaining orphan reads into singletons using
strip-and-split-for-assembly.

(We actually use Velvet at this point, but there should be no harm in
using a metagenome assembler such as MetaVelvet or MetaIDBA or
SOAPdenovo.)

Read more about this in the partitioning [http://pnas.org/content/early/2012/07/25/1121464109.abstract]
paper. We have some upcoming papers on partitioning and metagenome
assembly, too; we’ll link those in when we can.

Metatranscriptome assembly

(Not tested by us!)

	Apply single-pass digital normalization.

Run normalize-by-median to C=20.

2. Extract any remaining paired-end reads and lump remaining orphan
reads into singletons using strip-and-split-for-assembly

3. Then assemble with a genome or metagenome assembler, not an
mRNAseq assembler. Use appropriate insert size specs etc. for the
paired end reads.

Preprocessing Illumina for other applications

(Not tested by us!)

Others have told us that you can apply digital normalization to
Illumina data prior to using Illumina for RNA scaffolding [http://www.ncbi.nlm.nih.gov/pubmed?term=20980554] or error
correcting PacBio reads [http://www.ncbi.nlm.nih.gov/pubmed?term=22750884].

Our suggestion for this, based on no evidence whatsoever, is to
diginorm the Illumina data to C=20.

Quantifying mRNAseq or metagenomes assembled with digital normalization

For now, khmer only deals with assembly! So: assemble. Then, go back
to your original, unnormalized reads, and map those to your assembly
with e.g. bowtie. Then count as you normally would :).

Philosophy of digital normalization

The basic philosophy of digital normalization is “load your most
valuable reads first.” Diginorm gets rid of redundancy iteratively,
so you are more likely to retain the first reads fed in; this means
you should load in paired end reads, or longer reads, first.

Iterative and independent normalization

You can use --loadtable and --savetable to do iterative
normalizations on multiple files in multiple steps. For example, break

normalize-by-median.py [...] file1.fa file2.fa file3.fa

into multiple steps like so:

normalize-by-median.py [...] --savetable file1.kh file1.fa
normalize-by-median.py [...] --loadtable file1.kh --savetable file2.kh file2.fa
normalize-by-median.py [...] --loadtable file2.kh --savetable file3.kh file3.fa

The results should be identical!

If you want to independently normalize multiple files for speed reasons, go
ahead. Just remember to do a combined normalization at the end. For example,
instead of

normalize-by-median.py [...] file1.fa file2.fa file3.fa

you could do

normalize-by-median.py [...] file1.fa
normalize-by-median.py [...] file2.fa
normalize-by-median.py [...] file3.fa

and then do a final

normalize-by-median.py [...] file1.fa.keep file2.fa.keep file3.fa.keep

The results will not be identical, but should not differ
significantly. The multipass approach will take more total time but
may end up being faster walltime because you can execute the
independent normalizations on multiple computers.

For a cleverer approach that we will someday implement, read the
Beachcomber’s Dilemma [http://ivory.idyll.org/blog/beachcombers-dilemma.html].

Validating and comparing assemblies

More here soon :).

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 An assembly handbook for khmer - rough draft
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 khmer’s command-line interface

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

khmer’s command-line interface

The simplest way to use khmer’s functionality is through the command
line scripts, located in the scripts/ directory of the khmer
distribution. Below is our documentation for these scripts. Note
that all scripts can be given -h which will print out
a list of arguments taken by that script.

Many scripts take -x and -N parameters, which drive khmer’s
memory usage. These parameters depend on details of your data set; for more information
on how to choose them, see Choosing table sizes for khmer.

You can also override the default values of --ksize/-k,
--n_tables/-N, and --min-tablesize/-x with
the environment variables KHMER_KSIZE, KHMER_N_TABLES, and
KHMER_MIN_TABLESIZE respectively.

	k-mer counting and abundance filtering

	Partitioning

	Digital normalization

	Read handling: interleaving, splitting, etc.

Note

Almost all scripts take in either FASTA and FASTQ format, and
output the same. Some scripts may only recognize FASTQ if the file
ending is ‘.fq’ or ‘.fastq’, at least for now.

Files ending with ‘.gz’ will be treated as gzipped files, and
files ending with ‘.bz2’ will be treated as bzip2’d files.

k-mer counting and abundance filtering

load-into-counting.py

Build a k-mer counting table from the given sequences.

usage: load-into-counting.py [-h] [–version] [-q] [–ksize KSIZE]
 [–n_tables N_TABLES]
 [–min-tablesize MIN_TABLESIZE]
 [–threads N_THREADS] [-b]
 output_countingtable_filename
 input_sequence_filename
 [input_sequence_filename ...]

	
output_countingtable_filename

	The name of the file to write the k-mer counting table to.

	
input_sequence_filename

	The names of one or more FAST[AQ] input sequence files.

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
-b, --no-bigcount

	Do not count k-mers past 255

Note: with -b the output will be the exact size of the
k-mer counting table and this script will use a constant amount of memory.
In exchange k-mer counts will stop at 255. The memory usage of this script
with -b will be about 1.15x the product of the -x and
-N numbers.

Example:

load_into_counting.py -k 20 -x 5e7 out.kh data/100k-filtered.fa

Multiple threads can be used to accelerate the process, if you have extra
cores to spare.

Example:

load_into_counting.py -k 20 -x 5e7 -T 4 out.kh data/100k-filtered.fa

abundance-dist.py

Calculate abundance distribution of the k-mers in the sequence file using a pre-made k-mer counting table.

usage: abundance-dist.py [-h] [-z] [-s] [–version]
 input_counting_table_filename input_sequence_filename
 output_histogram_filename

	
input_counting_table_filename

	The name of the input k-mer counting table file.

	
input_sequence_filename

	The name of the input FAST[AQ] sequence file.

	
output_histogram_filename

	The columns are: (1) k-mer abundance, (2) k-mer count, (3) cumulative count, (4) fraction of total distinct k-mers.

	
-h, --help

	show this help message and exit

	
-z, --no-zero

	Do not output 0-count bins

	
-s, --squash

	Overwrite output file if it exists

	
--version

	show program’s version number and exit

abundance-dist-single.py

Caculate the abundance distribution of k-mers from a single sequence file.

usage: abundance-dist-single.py [-h] [–version] [-q] [–ksize KSIZE]
 [–n_tables N_TABLES]
 [–min-tablesize MIN_TABLESIZE]
 [–threads THREADS] [-z] [-b] [-s]
 [–savetable filename]
 input_sequence_filename
 output_histogram_filename

	
input_sequence_filename

	The name of the input FAST[AQ] sequence file.

	
output_histogram_filename

	The name of the output histogram file. The columns are: (1) k-mer abundance, (2) k-mer count, (3) cumulative count, (4) fraction of total distinct k-mers.

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
-z, --no-zero

	Do not output 0-count bins

	
-b, --no-bigcount

	Do not count k-mers past 255

	
-s, --squash

	Overwrite output file if it exists

	
--savetable <filename>

	Save the k-mer counting table to the specified filename.

Note that with -b this script is constant memory; in exchange,
k-mer counts will stop at 255. The memory usage of this script with
-b will be about 1.15x the product of the -x and
-N numbers.

To count k-mers in multiple files use load_into_counting.py and
abundance_dist.py.

filter-abund.py

Trim sequences at a minimum k-mer abundance.

usage: filter-abund.py [-h] [–version] [-q] [–ksize KSIZE]
 [–n_tables N_TABLES] [–min-tablesize MIN_TABLESIZE]
 [–threads THREADS] [–cutoff CUTOFF]
 [–variable-coverage] [–normalize-to NORMALIZE_TO]
 [-o optional_output_filename]
 input_presence_table_filename input_sequence_filename
 [input_sequence_filename ...]

	
input_presence_table_filename

	The input k-mer presence table filename

	
input_sequence_filename

	Input FAST[AQ] sequence filename

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
--cutoff <int>, -C <int>

	Trim at k-mers below this abundance.

	
--variable-coverage, -V

	Only trim low-abundance k-mers from sequences that have high coverage.

	
--normalize-to <int>, -Z <int>

	Base the variable-coverage cutoff on this median k-mer abundance.

	
-o <optional_output_filename>, --out <optional_output_filename>

	Output the trimmed sequences into a single file with the given filename instead of creating a new file for each input file.

Trimmed sequences will be placed in ${input_sequence_filename}.abundfilt
for each input sequence file. If the input sequences are from RNAseq or
metagenome sequencing then --variable-coverage should be used.

Example:

load-into-counting.py -k 20 -x 5e7 table.kh data/100k-filtered.fa
filter-abund.py -C 2 table.kh data/100k-filtered.fa

filter-abund-single.py

Trims sequences at a minimum k-mer abundance (in memory version).

usage: filter-abund-single.py [-h] [–version] [-q] [–ksize KSIZE]
 [–n_tables N_TABLES]
 [–min-tablesize MIN_TABLESIZE]
 [–threads THREADS] [–cutoff CUTOFF]
 [–savetable filename]
 input_sequence_filename

	
input_sequence_filename

	FAST[AQ] sequence file to trim

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
--cutoff <int>, -C <int>

	Trim at k-mers below this abundance.

	
--savetable <filename>

	If present, the name of the file to save the k-mer counting table to

Trimmed sequences will be placed in ${input_sequence_filename}.abundfilt.

This script is constant memory.

To trim reads based on k-mer abundance across multiple files, use
load-into-counting.py and filter-abund.py.

Example:

filter-abund-single.py -k 20 -x 5e7 -C 2 data/100k-filtered.fa

count-median.py

Count k-mers summary stats for sequences

usage: count-median.py [-h] [–version]
 input_counting_table_filename input_sequence_filename
 output_summary_filename

	
input_counting_table_filename

	input k-mer count table filename

	
input_sequence_filename

	input FAST[AQ] sequence filename

	
output_summary_filename

	output summary filename

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

Count the median/avg k-mer abundance for each sequence in the input file,
based on the k-mer counts in the given k-mer counting table. Can be used
to estimate expression levels (mRNAseq) or coverage (genomic/metagenomic).

The output file contains sequence id, median, average, stddev, and seq
length.

NOTE: All ‘N’s in the input sequences are converted to ‘G’s.

count-overlap.py

Count the overlap k-mers which are the k-mers appearing in two sequence datasets.

usage: count-overlap.py [-h] [–version] [-q] [–ksize KSIZE]
 [–n_tables N_TABLES] [–min-tablesize MIN_TABLESIZE]
 input_presence_table_filename input_sequence_filename
 output_report_filename

	
input_presence_table_filename

	input k-mer presence table filename

	
input_sequence_filename

	input sequence filename

	
output_report_filename

	output report filename

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

An additional report will be written to ${output_report_filename}.curve
containing the increase of overlap k-mers as the number of sequences in the
second database increases.

Partitioning

do-partition.py

Load, partition, and annotate FAST[AQ] sequences

usage: do-partition.py [-h] [–version] [-q] [–ksize KSIZE]
 [–n_tables N_TABLES] [–min-tablesize MIN_TABLESIZE]
 [–subset-size SUBSET_SIZE] [–no-big-traverse]
 [–threads N_THREADS] [–keep-subsets]
 graphbase input_sequence_filename
 [input_sequence_filename ...]

	
graphbase

	base name for output files

	
input_sequence_filename

	input FAST[AQ] sequence filenames

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--subset-size <float>, -s <float>

	Set subset size (usually 1e5-1e6 is good)

	
--no-big-traverse

	Truncate graph joins at big traversals

	
--threads, -T

	Number of simultaneous threads to execute

	
--keep-subsets

	Keep individual subsets (default: False)

Load in a set of sequences, partition them, merge the partitions, and
annotate the original sequences files with the partition information.

This script combines the functionality of load-graph.py,
partition-graph.py, merge-partitions.py, and
annotate-partitions.py into one script. This is convenient
but should probably not be used for large data sets, because
do-partition.py doesn’t provide save/resume functionality.

load-graph.py

Load sequences into the compressible graph format plus optional tagset.

usage: load-graph.py [-h] [–version] [-q] [–ksize KSIZE]
 [–n_tables N_TABLES] [–min-tablesize MIN_TABLESIZE]
 [–threads N_THREADS] [–no-build-tagset]
 output_presence_table_filename input_sequence_filename
 [input_sequence_filename ...]

	
output_presence_table_filename

	output k-mer presence table filename.

	
input_sequence_filename

	input FAST[AQ] sequence filename

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

	
--no-build-tagset, -n

	Do NOT construct tagset while loading sequences

See extract-partitions.py for a complete workflow.

partition-graph.py

Partition a sequence graph based upon waypoint connectivity

usage: partition-graph.py [-h] [–stoptags filename]
 [–subset-size SUBSET_SIZE] [–no-big-traverse]
 [–version] [–threads THREADS]
 basename

	
basename

	basename of the input k-mer presence table + tagset files

	
-h, --help

	show this help message and exit

	
--stoptags <filename>, -S <filename>

	Use stoptags in this file during partitioning

	
--subset-size <float>, -s <float>

	Set subset size (usually 1e5-1e6 is good)

	
--no-big-traverse

	Truncate graph joins at big traversals

	
--version

	show program’s version number and exit

	
--threads <int>, -T <int>

	Number of simultaneous threads to execute

The resulting partition maps are saved as ‘${basename}.subset.#.pmap’
files.

See ‘Artifact removal’ to understand the stoptags argument.

merge-partition.py

Merge partition map ‘.pmap’ files.

usage: merge-partition.py [-h] [–ksize KSIZE] [–keep-subsets] [–version]
 graphbase

	
graphbase

	basename for input and output files

	
-h, --help

	show this help message and exit

	
--ksize <int>, -k <int>

	k-mer size (default: 32)

	
--keep-subsets

	Keep individual subsets (default: False)

	
--version

	show program’s version number and exit

Take the ${graphbase}.subset.#.pmap files and merge them all into a single
${graphbase}.pmap.merged file for annotate-partitions.py to use.

annotate-partitions.py

Annotate sequences with partition IDs.

usage: annotate-partitions.py [-h] [–ksize KSIZE] [–version]
 graphbase input_sequence_filename
 [input_sequence_filename ...]

	
graphbase

	basename for input and output files

	
input_sequence_filename

	input FAST[AQ] sequences to annotate.

	
-h, --help

	show this help message and exit

	
--ksize <int>, -k <int>

	k-mer size (default: 32)

	
--version

	show program’s version number and exit

Load in a partitionmap (generally produced by partition-graph.py or
merge-partitions.py) and annotate the sequences in the given files with
their partition IDs. Use extract-partitions.py to extract
sequences into seperate group files.

Example (results will be in random-20-a.fa.part):

load-graph.py -k 20 example tests/test-data/random-20-a.fa
partition-graph.py example
merge-partitions.py -k 20 example
annotate-partitions.py -k 20 example tests/test-data/random-20-a.fa

extract-partitions.py

Separate sequences that are annotated with partitions into grouped files.

usage: extract-partitions.py [-h] [–max-size MAX_SIZE]
 [–min-partition-size MIN_PART_SIZE]
 [–no-output-groups] [–output-unassigned]
 [–version]
 output_filename_prefix input_partition_filename
 [input_partition_filename ...]

	
output_filename_prefix

	

	
input_partition_filename

	

	
-h, --help

	show this help message and exit

	
--max-size <int>, -X <int>

	Max group size (n sequences)

	
--min-partition-size <int>, -m <int>

	Minimum partition size worth keeping

	
--no-output-groups, -n

	Do not actually output groups files.

	
--output-unassigned, -U

	Output unassigned sequences, too

	
--version

	show program’s version number and exit

Example (results will be in example.group0000.fa):

load-graph.py -k 20 example tests/test-data/random-20-a.fa
partition-graph.py example
merge-partitions.py -k 20 example
annotate-partitions.py -k 20 example tests/test-data/random-20-a.fa
extract-partitions.py example random-20-a.fa.part

Artifact removal

The following scripts are specialized scripts for finding and removing
highly-connected k-mers (HCKs). See Partitioning large data sets (50m+ reads).

make-initial-stoptags.py

Find an initial set of highly connected k-mers.

usage: make-initial-stoptags.py [-h] [–version] [-q] [–ksize KSIZE]
 [–n_tables N_TABLES]
 [–min-tablesize MIN_TABLESIZE]
 [–subset-size SUBSET_SIZE]
 [–stoptags filename]
 graphbase

	
graphbase

	basename for input and output filenames

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
--subset-size <float>, -s <float>

	Set subset size (default 1e4 is prob ok)

	
--stoptags <filename>, -S <filename>

	Use stoptags in this file during partitioning

Loads a k-mer presence table/tagset pair created by load-graph.py, and does
a small set of traversals from graph waypoints; on these traversals, looks
for k-mers that are repeatedly traversed in high-density regions of the
graph, i.e. are highly connected. Outputs those k-mers as an initial set of
stoptags, which can be fed into partition-graph.py, find-knots.py, and
filter-stoptags.py.

The k-mer counting table size options parameters are for a k-mer counting
table to keep track of repeatedly-traversed k-mers. The subset size option
specifies the number of waypoints from which to traverse; for highly
connected data sets, the default (1000) is probably ok.

find-knots.py

Find all highly connected k-mers.

usage: find-knots.py [-h] [–n_tables N_TABLES]
 [–min-tablesize MIN_TABLESIZE] [–version]
 graphbase

	
graphbase

	Basename for the input and output files.

	
-h, --help

	show this help message and exit

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on the size of the k-mer counting table(s)

	
--version

	show program’s version number and exit

Load an k-mer presence table/tagset pair created by load-graph, and a set
of pmap files created by partition-graph. Go through each pmap file,
select the largest partition in each, and do the same kind of traversal as
in make-initial-stoptags.py from each of the waypoints in that
partition; this should identify all of the HCKs in that partition. These
HCKs are output to <graphbase>.stoptags after each pmap file.

Parameter choice is reasonably important. See the pipeline in
Partitioning large data sets (50m+ reads) for an example run.

This script is not very scalable and may blow up memory and die horribly.
You should be able to use the intermediate stoptags to restart the
process, and if you eliminate the already-processed pmap files, you can
continue where you left off.

filter-stoptags.py

Trim sequences at stoptags.

usage: filter-stoptags.py [-h] [–ksize KSIZE] [–version]
 input_stoptags_filename input_sequence_filename
 [input_sequence_filename ...]

	
input_stoptags_filename

	

	
input_sequence_filename

	

	
-h, --help

	show this help message and exit

	
--ksize <int>, -k <int>

	k-mer size

	
--version

	show program’s version number and exit

Load stoptags in from the given .stoptags file and use them to trim
or remove the sequences in <file1-N>. Trimmed sequences will be placed in
<fileN>.stopfilt.

Digital normalization

normalize-by-median.py

Do digital normilization (remove mostly redundant sequences)

usage: normalize-by-median.py [-h] [–version] [-q] [–ksize KSIZE]
 [–n_tables N_TABLES]
 [–min-tablesize MIN_TABLESIZE] [-C CUTOFF] [-p]
 [-s filename] [-R filename] [-f]
 [–save-on-failure] [-d DUMP_FREQUENCY]
 [-o filename] [-l filename]
 input_sequence_filename
 [input_sequence_filename ...]

	
input_sequence_filename

	Input FAST[AQ] sequence filename.

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-q, --quiet

	

	
--ksize <int>, -k <int>

	k-mer size to use

	
--n_tables <int>, -N <int>

	number of k-mer counting tables to use

	
--min-tablesize <float>, -x <float>

	lower bound on tablesize to use

	
-C <int>, --cutoff <int>

	

	
-p, --paired

	

	
-s <filename>, --savetable <filename>

	

	
-R <filename>, --report <filename>

	

	
-f, --fault-tolerant

	continue on next file if read errors are encountered

	
--save-on-failure

	Save k-mer counting table when an error occurs

	
-d <int>, --dump-frequency <int>

	dump k-mer counting table every d files

	
-o <filename>, --out <filename>

	only output a single file with the specified filename

	
-l <filename>, --loadtable <filename>

	load a precomputed k-mer table from disk

Discard sequences based on whether or not their median k-mer abundance lies
above a specified cutoff. Kept sequences will be placed in <fileN>.keep.

Paired end reads will be considered together if -p is set. If
either read will be kept, then both will be kept. This should result in
keeping (or discarding) each sequencing fragment. This helps with retention
of repeats, especially.

With -s/--savetable, the k-mer counting table will be
saved to the specified file after all sequences have been processed. With
-d, the k-mer counting table will be saved every d files for
multifile runs; if -s is set, the specified name will be used,
and if not, the name backup.ct will be used.
-l/--loadtable will load the specified k-mer counting
table before processsing the specified files.

-f/--fault-tolerant will force the program to continue
upon encountering a formatting error in a sequence file; the k-mer counting
table up to that point will be dumped, and processing will continue on the
next file.

Example:

normalize-by-median.py -k 17 tests/test-data/test-abund-read-2.fa

Example:

normalize-by-median.py -p -k 17 tests/test-data/test-abund-read-paired.fa

Example:

normalize-by-median.py -k 17 -f tests/test-data/test-error-reads.fq tests/test-data/test-fastq-reads.fq

Example:

normalize-by-median.py -k 17 -d 2 -s test.ct tests/test-data/test-abund-read-2.fa tests/test-data/test-fastq-reads

Read handling: interleaving, splitting, etc.

extract-paired-reads.py

Take a mixture of reads and split into pairs and orphans.

usage: extract-paired-reads.py [-h] [–version] infile

	
infile

	

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

The output is two files, <input file>.pe and <input file>.se, placed in the
current directory. The .pe file contains interleaved and properly paired
sequences, while the .se file contains orphan sequences.

Many assemblers (e.g. Velvet) require that you give them either perfectly
interleaved files, or files containing only single reads. This script takes
files that were originally interleaved but where reads may have been
orphaned via error filtering, application of abundance filtering, digital
normalization in non-paired mode, or partitioning.

Example:

extract-paired-reads.py tests/test-data/paired.fq

interleave-reads.py

Produce interleaved files from R1/R2 paired files

usage: interleave-reads.py [-h] [-o filename] [–version]
 infiles [infiles ...]

	
infiles

	

	
-h, --help

	show this help message and exit

	
-o <filename>, --output <filename>

	

	
--version

	show program’s version number and exit

The output is an interleaved set of reads, with each read in <R1> paired
with a read in <R2>. By default, the output goes to stdout unless
-o/--output is specified.

As a “bonus”, this file ensures that read names are formatted in a
consistent way, such that they look like the pre-1.8 Casava format
(@name/1, @name/2).

Example:

interleave-reads.py tests/test-data/paired.fq.1 tests/test-data/paired.fq.2 -o paired.fq

split-paired-reads.py

Split interleaved reads into two files, left and right.

usage: split-paired-reads.py [-h] [–version] infile

	
infile

	

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

Some programs want paired-end read input in the One True Format, which is
interleaved; other programs want input in the Insanely Bad Format, with
left- and right- reads separated. This reformats the former to the latter.

Example:

split-paired-reads.py tests/test-data/paired.fq

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 khmer’s command-line interface
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Blog posts and additional documentation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Blog posts and additional documentation

Hashtable and filtering

The basic inexact-matching approach used by the hashtable code is
described in this blog post:

http://ivory.idyll.org/blog/jul-10/kmer-filtering

A test data set (soil metagenomics, 88m reads, 10gb) is here:

http://angus.ged.msu.edu.s3.amazonaws.com/88m-reads.fa.gz

Illumina read abundance profiles

khmer can be used to look at systematic variations in k-mer statistics
across Illumina reads; see, for example, this blog post:

http://ivory.idyll.org/blog/jul-10/illumina-read-phenomenology

The fasta-to-abundance-hist [http://github.com/ctb/khmer/blob/master/sandbox/fasta-to-abundance-hist.py]
and abundance-hist-by-position [http://github.com/ctb/khmer/blob/master/sandbox/abundance-hist-by-position.py]
scripts can be used to generate the k-mer abundance profile data, after
loading all the k-mer counts into a .kh file:

first, load all the k-mer counts:
load-into-counting.py -k 20 -x 1e7 25k.kh data/25k.fq.gz

then, build the '.freq' file that contains all of the counts by position
python sandbox/fasta-to-abundance-hist.py 25k.kh data/25k.fq.gz

sum across positions.
python sandbox/abundance-hist-by-position.py data/25k.fq.gz.freq > out.dist

The hashtable method ‘dump_kmers_by_abundance’ can be used to dump
high abundance k-mers, but we don’t have a script handy to do that yet.

You can assess high/low abundance k-mer distributions with the
hi-lo-abundance-by-position script [http://github.com/ctb/khmer/blob/master/sandbox/hi-lo-abundance-by-position.py]:

load-into-counting.py -k 20 25k.kh data/25k.fq.gz
python sandbox/hi-lo-abundance-by-position.py 25k.kh data/25k.fq.gz

This will produce two output files, <filename>.pos.abund=1 and
<filename>.pos.abund=255.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Blog posts and additional documentation
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Choosing table sizes for khmer

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Choosing table sizes for khmer

If you look at the documentation for the scripts (khmer’s command-line interface) you’ll
see two mysterious parameters – -N and -x, or, more
verbosely, -n_tables and --tablesize. What are these, and
how do you specify them?

The really short version

There is no way (except for experience, rules of thumb, and intuition) to
know what these parameters should be up front. So, make the product of
these two parameters be the size of your available memory:

-N 4 -x 4e9

for a machine with 16 GB of free memory, for example. Also see
the rules of thumb, below.

The short version

These parameters specify the maximum memory usage of the primary data
structure in khmer, which is basically N big hash tables of size x.
The product of the number of hash tables and the size of the hash
tables specifies the total amount of memory used.

This table is used to track k-mers. If it is too small, khmer
will fail in various ways (and should complain), but there is no harm
in making it too large. So, the absolute safest thing to do is to
specify as much memory as is available. Most scripts will inform
you of the total memory usage, and (at the end) will complain if it’s
too small.

For normalize-by-median, khmer uses one byte per hash entry, so: if
you had 16 GB of available RAM, you should specify something like -N
4 -x 4e9, which multiplies out to about 16 GB.

For the graph partitioning stuff, khmer uses only 1 bit per k-mer, so
you can multiple your available memory by 8: for 16 GB of RAM, you could
use

-N 4 -x 32e9

which multiplies out to 128 Gbits of RAM, or 16 Gbytes.

Life is a bit more complicated than this, however, because some scripts –
load-into-counting and load-graph – keep ancillary information that will
consume memory beyond this table data structure. So if you run out of
memory, decrease the table size.

Also see the rules of thumb, below.

The real full version

khmer’s scripts, at their heart, represents k-mers in a very memory
efficient way by taking advantage of two data structures, Bloom
filters [http://en.wikipedia.org/wiki/Bloom_filter] and CountMin
Sketches [https://sites.google.com/site/countminsketch/], that are
both probabilistic and constant memory. The “probabilistic” part
means that there are false positives: the less memory you use, the
more likely it is that khmer will think that k-mers are present when
they are not, in fact, present.

Digital normalization (normalize-by-median and filter-abund) uses
the CountMin Sketch data structure.

Graph partitioning (load-graph etc.) uses the Bloom filter data structure.

The practical ramifications of this are pretty cool. For example,
your digital normalization is guaranteed not to increase in memory
utilization, and graph partitioning is estimated to be 10-20x more
memory efficient than any other de Bruijn graph representation. And
hash tables (which is what Bloom filters and CountMin Sketches use)
are really fast and efficient. Moreover, the optimal memory size for
these primary data structures is dependent on the number of k-mers,
but not explicitly on the size of k itself, which is very unusual.

In exchange for this memory efficiency, however, you gain a certain
type of parameter complexity. Unlike your more typical k-mer package
(like the Velvet assembler, or Jellyfish or Meryl or Tallymer), you
are either guaranteed not to run out of memory (for digital
normalization) or much less likely to do so (for partitioning).

The biggest problem with khmer is that there is a minimum hash number
and size that you need to specify for a given number of k-mers, and
you cannot confidently predict what it is before actually loading in
the data. This, by the way, is also true for de Bruijn graph
assemblers and all the other k-mer-based software – the final memory
usage depends on the total number of k-mers, which in turn depends on
the true size of your underlying genomic variation (e.g. genome or
transcriptome size), the number of errors, and the k-mer size you
choose (the k parameter) [see Conway & Bromage, 2011] [http://www.ncbi.nlm.nih.gov/pubmed?term=21245053]. The number
of reads or the size of your data set is only somewhat correlated with
the total number of k-mers. Trimming protocols, sequencing depth,
and polymorphism rates are all important factors that affect k-mer
count.

The bad news is that we don’t have good ways to estimate total k-mer
count a priori, although we can give you some rules of thumb, below.
In fact, counting the total number of distinct k-mers is a somewhat
annoying challenge. Frankly, we recommend just guessing instead of
trying to be all scientific about it.

The good news is that you can never give khmer too much memory! k-mer
counting and set membership simply gets more and more accurate as you
feed it more memory. (Although there may be performance hits from
memory I/O, e.g. see the NUMA architecture [http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access].) The
other good news is that khmer can measure the false positive rate and
detect dangerously low memory conditions. For partitioning, we
actually know what a too-high false positive rate is – our k-mer
percolation paper [http://arxiv.org/abs/1112.4193] lays out the
math. For digital normalization, we assume that a false positive rate
of 10% is bad. In both cases the data-loading scripts will exit with
an error-code.

Rules of thumb

Juse use -N 4, always, and vary the -x parameter.

For digital normalization, we recommend:

	-x 2e9 for any amount of sequencing for a single microbial genome,
MDA-amplified or single colony.

	-x 4e9 for up to a billion mRNAseq reads from any organism. Past that,
increase it.

	-x 8e9 for most eukaryotic genome samples.

	-x 8e9 will also handle most “simple” metagenomic samples (HMP on down)

	For metagenomic samples that are more complex, such as soil or marine,
start as high as possible. For example, we are using -x 64e9 for
~300 Gbp of soil reads.

For partitioning of complex metagenome samples, we recommend starting
as high as you can – something like half your system memory. So if
you have 256 GB of RAM, use -N 4 -x 256e9 which will use 4 x 256 /
8 = 128 GB of RAM for the basic graph storage, leaving other memory
for the ancillary data structures.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Choosing table sizes for khmer
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Partitioning large data sets (50m+ reads)

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Partitioning large data sets (50m+ reads)

“Partitioning” is what khmer calls the process of separating reads
that do not connect to each other into different logical bins. The
goal of partitioning is to apply divide & conquer to the process of
metagenomic assembly.

Basic partitioning

The basic workflow for partitioning is in the figure below:

[image: _images/partitioning-workflow.png]
Briefly, you load everything into khmer’s probabilistic graph
representation; exhaustively explore the graph to find all
disconnected sequences; merge the results of the (parallelized) graph
exploration; annotate sequences with their partition; and then extract
the different partitions into files grouped by partition size. These
groups can then be assembled individually.

Artifact removal

As part of our partitioning research, we discovered that large
Illumina data sets tend to contain a single large, connected
component. This connected component seems to stem from sequencing
artifacts that causes knots in the assembly graph. We have developed
tools to forcibly remove the knot at the heart of the graph.

Here’s the workflow:

[image: _images/artifact-removal.png]

Running on an example data set

Here is a set of commands for running both basic partitioning and
artifact removal on a small soil metagenomics data set that we’ve
made available for this purpose.

The data set is about 1.1G and you can download it from here:

https://s3.amazonaws.com/public.ged.msu.edu/khmer/iowa-corn-50m.fa.gz

cd /path/to/data

the next command will create a '50m.ht' and a '50m.tagset',
representing the de Bruijn graph
load-graph.py -k 32 -N 4 -x 16e9 50m iowa-corn-50m.fa.gz

this will then partition that graph. should take a while.
update threads to something higher if you have more cores.
this creates a bunch of files, 50m.subset.*.pmap
partition-graph.py --threads 4 -s 1e5 50m

now, merge the pmap files into one big pmap file, 50m.pmap.merged
merge-partitions.py 50m

next, annotate the original sequences with their partition numbers.
this will create iowa-corn-50m.fa.gz.part
annotate-partitions.py 50m iowa-corn-50m.fa.gz

now, extract the partitions in groups into 'iowa-corn-50m.groupNNNN.fa'
extract-partitions.py iowa-corn-50m iowa-corn-50m.fa.gz.part

at this point, you can assemble the group files individually. Note,
however, that the last one them is quite big? this is because it's
the lump! yay!

if you want to break up the lump, go through the partitioning bit
on the group file, but this time with a twist:
mv iowa-corn-50m.group0005.fa corn-50m.lump.fa

create graph,
load-graph.py -x 8e9 lump corn-50m.lump.fa

create an initial set of stoptags to help in knot-traversal; otherwise,
partitioning and knot-traversal (which is systematic) is really expensive.
make-initial-stoptags.py lump

now partition the graph, using the stoptags file
partition-graph.py --stoptags lump.stoptags lump

use the partitioned subsets to find the k-mers that nucleate the lump
find-knots.py -x 2e8 -N 4 lump

remove those k-mers from the fasta files
filter-stoptags.py *.stoptags corn-50m.lump.fa

now, reload the filtered data set in and partition again.
load-graph.py -x 8e9 lumpfilt corn-50m.lump.fa.stopfilt
partition-graph.py -T 4 lumpfilt
merge-partitions.py lumpfilt
annotate-partitions.py lumpfilt corn-50m.lump.fa.stopfilt
extract-partitions.py corn-50m-lump corn-50m.lump.fa.stopfilt.part

and voila, after all that, you should now have your de-knotted lump in
corn-50m-lump.group*.fa. The *.group????.fa files can now be
assembled individually by your favorite assembler.

Post-partitioning assembly

The ‘extract-partitions’ script takes reads belonging to each
partition and aggregates them into ‘group’ files; each group file
contains at least one entire partition (and generally a lot more).
Note, you can control the number of reads in each file (equiv, the
size of these files) with some of the arguments that
‘extract-partitions’ takes.

Now that you have these files... what do you do with them? The short
answer is: assemble them! Each of these group files contains reads
that do not connect to reads in other files, so the files can be
assembled individually (which is the whole point of partitioning).

If you’re using Velvet, checkout the sandbox/velvet-assemble.sh script,
which you can run like this:

bash /path/to/khmer/sandbox/velvet-assemble.sh <groupfile> <k>

This script does three things:

	first, it breaks the reads up into paired reads and single reads,
and puts them in separate files (.pe and .se);

	second, it strips off the partition information from the reads,
which confuses Velvet;

	and third, it runs velveth and velvetg to actually assemble.

You can implement your own approach, of course, but this is an example of
what we do ourselves.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Partitioning large data sets (50m+ reads)
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Architecture and Design

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Architecture and Design

What follows is an attempt to describe the overall architecture and design of
the khmer software under the hood. Where appropriate, implementation details
will be mentioned. Also, possible future directions and design considerations
will be mentioned as appropriate.

Overview

Data pumps stage data from disk storage into an in-memory cache. The in-memory
cache is divided into segments, one segment per thread. A cache manager exposes
an interface for staging the data via the data pumps and for accessing the data
in the cache segments. Read parsers convert the staged data into read
objects. A separate state object is maintained for each thread using a parser.
Existing-tracking or counting Bloom filters can use the read parsers as a
source of reads from which to extract k-mers.

The read parsers and the layers under them can be controlled via global
configuration objects, which provide default values during their instantiation.
In many cases, these default values can also be overridden by supplying
pertinent arguments to the constructors. Only one global configuration object
is considered active at a given time; but, a singleton pattern is not enforced
and more than one may be available to supply alternative configurations.

The top-level makefile for the project contains a user-configurable section,
wherein preprocessor, compiler, and linker options may be selected via
convenient, prefabricated bundles. The ability to generate profiling
instrumentation, compile with debugging symbols, and to generate tracing
instrumentation are all controlled via these option bundles. The lower levels
of the code, such as the data pumps, cache manager, and read parsers all have
significant built-in profiling and tracing instrumentation. This
instrumentation is conditionally-compiled according to the option bundles
selected in the top-level makefile.

Namespace

Unless otherwise noted, all C++ classes, functions, and static variables noted
in this document are members of the khmer namespace. Likewise, unless
otherwise noted, all Python classes, functions, and module variables noted in
this document are members of the khmer module.

Todo

Use breathe to interface with Doxygen for better documentation.

Configuration Objects

C++ API

The declaration of the configuration objects is contained in
lib/khmer_config.hh.

	
class Config

	

	
Config& get_active_config()

	

	
void set_active_config(Config& c)

	

An active configuration object is always present. A reference to this object
is supplied via the get_active_config() function. The initial
settings of the active configuration object are quite conservative. New
configuration objects are created with the empty constructor; all settings
modifications occur upon already-created instances via their setter methods.
The active configuration object can be set via the
set_active_config() function, which takes a reference to a
Config object as its only argument.

Except for read-only configuration options, such as extra sanity checking,
which are determined at the time of compilation, the configuration options are
manipulated via getter/setter methods. The most prominent or useful
getter/setter methods are the following:

	
uint32_t Config::get_number_of_threads() const

	

	
void Config::set_number_of_threads(uint32_t const n)

	

	
uint64_t const Config::get_reads_input_buffer_size() const

	

	
void Config::set_reads_input_buffer_size(uint64_t const sz)

	

Python API

The Config objects are exposed in the Python wrapper.

	
khmer.get_config()

	

	
khmer.set_config(c)

	

The C++ getter/setter methods are exposed via the same names in Python.

Todo

The getter/setter methods should be exposed as properties in Python.

Trace Loggers

Trace loggers can log execution traces and other useful debugging information
to files on a per-thread basis. This makes them very useful for debugging
multi-threaded code, especially in the absence of advanced commercial
debuggers, such as DDT or TotalView. Trace loggers are controlled via several
user-configurable variables in the top-level makefile. As of this writing,
these variables are WITH_INTERNAL_TRACING, TRACE_STATE_CHANGES,
TRACE_BUSYWAITS, TRACE_SPINLOCKS, TRACE_MEMCOPIES, and
TRACE_DATA. The TRACE_ options are ineffective unless
WITH_INTERNAL_TRACING is set to true.

Todo

Replace the editing of makefiles with a configure script or else move to an
all-Pythonic regime where the user would edit setup.cfg. See
issue #9 [https://github.com/ged-lab/khmer/issues/9] in the Github issue
tracker for the project.

The data pump and read parser code, as well as some of the Bloom filter code,
is impregnated with trace loggers. Other parts of the source code could use
them as well.

Trace logger objects are not exposed directly via the Python wrapper; they are
only available in the C++ API. The trace logger class is declared in the
lib/trace_logger.hh file.

	
class TraceLogger

	

Tracing be performed at coarser or finer levels of detail, as desired. An
enumeration of named integral constants provides the available levels. The use
of TLVL_ALL will trace everything which is instrumented for tracing. After
that, TLVL_DEBUG9 is the next finest level of detail. The enumeration
ascends to higher and higher numerical values which indicate more coarseness;
specifically the ordering is trace levels TLVL_DEBUG8 through
TLVL_DEBUG0, followed by TLVL_INFO9 through TLVL_INFO0, and then
TLVL_WARNING, TLVL_ERROR, and TLVL_CRITICAL. The special level
TLVL_NONE means that nothing will be traced even though tracing may be
activated at compile time. Note that TLVL_ALL corresponds to 0 and
TLVL_NONE corresponds to 255; this is useful for setting trace levels in
method arguments via the Python interface.

Todo

Expose trace level names via the Python interface.

Todo

Allow C++ TraceLogger objects to be targets of Python
logging module?

Two constructors are available for instantiating objects of type
TraceLogger. One takes the trace level and a FILE * stream
handle. The other takes the trace level, a file name format string, and a
variable number of arguments to sprintf into that format string. This form
exists so that trace files, named according to logical thread ID, can be
created, for example. The trace level argument is the finest requested level of
detail which will be traced by the object.

The objects instantiated by these constructors are function objects (also
sometimes known as functors to the chagrin of some mathematicians). This is
to say that the objects may be called.

	
void TraceLogger::operator()(uint8_t const level, char const* const format, ...) const

	

The level argument is the desired level of detail. If the object was
instantiated for a coarser level than the requested level, then nothing will be
logged. The format argument is the format string for the underlying
fprintf call and a variable number of arguments may be supplied for use
with this format string.

Performance Metrics

Performance metrics can be gathered on a per-thread basis and can measure
things which are not covered by traditional profiling tools. Such metrics may
include the input or output rate in bytes per second, for example. Not all
platforms support the high resolution, per-thread timers needed to effectively
use these metrics.

The Python wrapper does not presently support reporting on performance metrics.

Todo

Support reporting on performance metrics from within the Python wrapper.

The performance metrics abstract base class is declared in the
lib/perf_metrics.hh file. This class is subclassed for various specific
domains.

	
class IPerformanceMetrics

	

The class provides a hassle-free stopwatch.

	
void IPerformanceMetrics::start_timers()

	

	
void IPerformanceMetrics::stop_timers()

	

These functions record the amount of physical time elapsed since the thread was
created and the amount of time that the thread has spent using CPU cores. Two
sets of internal scratch variables are used for this purpose: one set of start
times and one set of stop times.

Warning

Because of the use of internal scratch variables, these methods are not
reentrant. Timer deltas must be collected before new calls can be issued to
the stopwatch. This is the trade-off for convenience....

Once start and stop times have been accumulated, then a timer delta can be
calculated and stowed in the appropriate category. Categories are determined by
keys which are defined in subclasses of the abstract class. The delta
accumulator takes a category key as an argument and is declared pure virtual in
the abstract base class so that it must be implemented in subclasses where they
category keys are enumerated.

	
void IPerformanceMetrics::accumulate_timer_deltas(uint32_t metrics_key)

	

Input Data Pumps

An input data pump object copies data from a file into a cache in memory. Since
accesses to memory are typically three orders of magnitude faster than to an
individual hard disk drive and since many operations to process the data are
slower than reading it from a file, it makes sense to stage some of it into
memory. Having the data in memory can reduce the latency from accessing it upon
demand. And, the cache in memory can be filled more rapidly than it is
processed.

The input data pumps are declared in lib/read_parsers.hh. All of them
derive from an abstract base class.

Todo

Refactor the data pumps into a separate header and implementation file.

	
class IStreamReader

	

Presently, three types of data pumps are implemented.

	
class RawStreamReader

	

	
class GzStreamReader

	

	
class Bz2StreamReader

	

These input data pumps are not exposed via the Python wrapper.

The IStreamReader interface defines one method of interest.

	
uint64_t const read_into_cache(uint8_t* const cache, uint64_t const cache_size)

	

This is a pure virtual method which must be overridden in subclasses. The
cache parameter receives an argument which is an arbitrary piece of memory
which it treats as an array of bytes. The cache_size parameter receives an
argument which is the size, in bytes, of the cache. The return value is the
number of bytes read into the cache from file.

Raw Stream Reader

The raw stream reader is constructed from a file descriptor, such as returned
by the open system call. An optional read alignment may be supplied to this
constructor. Depending on the operating system and file system, this may be
used as a chunk size and alignment for direct I/O. Otherwise, it is ignored.
Direct I/O allows for blocks to copied directly from a block device into
user-space memory rather than passing through a kernel-space block cache first.
This reduces the number of memory copies involved in processing the data.

Warning

Direct I/O has received some testing within the software, but has not been
tested enough to be considered production-ready.

Note

In principle, the file descriptor could number 0 (stdin) and one could
create pipelines, but this is not supported at the higher level interfaces.

Reading is currently performed in a synchronous manner, which is fine for most
typical use cases of the software since input is not the bottleneck.

Todo

Support asynchronous reading.

Gzip Stream Reader and Decompressor

The stream reader and decompressor for the gzip format is based on
zlib. No direct I/O is supported by this stream reader and its constructor
therefore only accepts a file descriptor. Furthermore, data must be copied and
decompressed sequentially and cannot be read asynchronously. In the regime that
higher level processing is fast, this stream reader is likely to be a
bottleneck, especially as there is overhead from decompression. However, as
pipelining support does not yet exist in the software, providing native support
for a popular compression format makes sense. Also, some users of the software
may not be familiar with standard Unix compression tools, such as gzip;
built-in support of popular compression formats removes a barrier to entry for
these users.

Todo

Implement higher level support for pipelining so that parallelized
decompressors can feed a raw stream reader, assuming that they can output
decompressed data to stdout and do so in order. Alternatively, if a
parallelized variant of zlib can be found, then that should be used in
place of zlib for native support.

Bzip2 Stream Reader and Decompressor

The stream reader and decompressor for the bzip2 format is based on the
bzip2 library. The same notes and considerations for the gzip stream
reader also apply to this one as well.

As a historical note, it is worth mentioning that the logic for reading from a
bzip2-compressed file stream is significantly more complicated than for raw
or gzip-compressed streams because of the way the library API is structured
and the nature of the compression format. Prior to the architecture being
described, data pumps and reads parsers were tightly coupled and implementing a
bzip2 data pump in that architecture would have been very painful. As it
turns out, the current architecture preemptively fixed a bug in the old
gzip data pump before it was reported against that architecture. So, this
decoupled design has already paid for itself several times over.

Thread Identity Maps

Higher level processing requires that threads be able to persistently work with
the same set of data. A thread does not inherently “know” what its index into a
particular lookup table is. However, this index can be mapped to an OS-native
identifier for a thread. Using an appropriate system call, a thread can query
its own native identifier from the operating system and then use this as a map
key to find its logical identifier within the software. This logical identifier
serves as the thread’s index into any lookup tables which it may need to use.

The self-identification is also important on the grounds of a software
engineering principle: don’t break existing interfaces. Prior to the current
architecture, the code was not thread-safe. In order to add thread-safety in a
reliable manner and not break existing interfaces, self-identification of
threads was necessary.

The thread identity map class is declared in the lib/thread_id_map.hh
file.

	
class ThreadIDMap

	

This class is not exposed via the Python wrapper as it is an internal
mechanism. And, the implementation of the class varies according to operating
system. The only important method for those who wish to avail themselves to
this bookkeeping method is the one which returns the logical identifier (lookup
table index) of the current thread.

	
uint32_t const ThreadIDMap::get_thread_id()

	

New entries are added to the map as new threads call this method for the first
time. Thus, the bookkeeping is automatic and does not get in the way of the
developer.

Cache Managers

A cache manager provides memory into which an input data pump may copy. The
provided memory is segmented on a per-thread basis. On machines with multiple
NUMA nodes, this can help performance by decreasing the likelihood of
cross-node fetches and stores. More importantly, it provides an association
between a particular thread and a particular cache segment, so that higher
level processing, such as parsing, can always be guaranteed to operate on the
same contiguous portion of memory.

Todo

Implement pinning of threads to specific cores on operating systems which
support this. Preventing the migration of threads between cores should
mostly eliminate cross-node fetches and stores.

The lib/read_parsers.hh file declares the cache manager and cache
manager segment classes.

	
class CacheManager

	

	
class CacheManagerSegment

	

As multiple threads share access to the same data pump, the cache manager
orchestrates access to this resource. Internally, a spinlock is used to limit
access to one thread at a time.

Todo

Increase period of spinlock trials from once per iteration to something
greater, similar to what the other busywaiters which perform atomic tests
use.

Internally, a ThreadIDMap is used to match a current thread with
its corresponding entry in the table of cache segments. A convenience method is
provided for the current thread to find its corresponding cache segment,
creating it if it doesn’t already exist.

	
CacheSegment& CacheManger::_get_segment(bool const higher=false)

	

This is a private method used only within cache mangers. The higher
parameter is vestigial remnant from an earlier implementation and can likely be
removed.

Todo

Remove the higher parameter from _get_segment().

Developers wishing to use a cache manager rather than muck around in its
implementation will probably find the following methods most useful.

	
bool const CacheManager::has_more_data()

	

	
uint64_t const CacheManager::get_bytes(uint8_t* const buffer, uint64_t buffer_len)

	

	
void CacheManager::split_at(uint64_t const pos)

	

The has_more_data() method queries both the underlying stream and the
current cache segment to see if more data is available. If both the underlying
stream is exhausted and the memory cursor, which tracks how much of a cache
segment has been accessed since its last refill, is at the end of the segment,
then no more data is considered to be available and the current thread hits a
synchronization barrier to wait for the other threads to finish.

The get_bytes() method copies up to buffer_len bytes of memory
from the current cache segment into the supplied buffer buffer. All
bookkeeping, such as replenishing the cache segment from the underlying stream,
is handled behind the scenes. The method also copies memory from the
appropriate copyaside buffer as necessary. Copyaside buffers are created by
the split_at() method and represent extensions to the current cache
segment.

Todo

Expose the underlying memory segments directly to higher level processing,
such as parsing, to eliminate the memory copy overhead that
get_bytes() carries. Note that this comes at the cost of some
horrid bookkeeping on the part of the higher level functions. The
get_bytes() method exists to handle this bookkeeping.

The split_at() method copies up to pos bytes from the beginning
of the current cache segment into a copyaside buffer. The copyaside buffer will
then be available for the previous (in terms of lookup table index modulo the
number of threads) cache segment. This method helps with multi-threaded parsing
of files when parser offsets into a file do not correspond with record
boundaries. A parser can scan forward to the next record boundary and then set
the scanned over bytes aside to be appended to the cache segment which contains
the beginning of the partial record.

The initial implementation of the cache manager used setaside buffers, which
were just reserved portions of cache segments and no memory copies were
performed. However, the bookkeeping was quite complicated and after several
bugs slipped through the cracks, the setaside buffer logic was converted to
copyaside buffers. The cost of the memory copies is essentially nothing in the
typical use cases encountered by the software. Copyaside buffers are also much
more amenable to asynchronous refilling of cache segments, should that be
supported at a later point.

Todo

Implement asynchronous refills of cache segments.

Reads and Read Pairs

Reads are simple data structures which contain genomic sequences, as well
identifiers and quality scores for those sequences. The class is declared in
lib/read_parsers.hh.

	
class Read

	

The Python wrapper exposes an interface to reads.

	
class khmer.Read

	

The data members are accessed as properties. These mimic the access keys for
screed records.

	
Read.name

	

	
Read.sequence

	

	
Read.accuracy

	

	
Read.annotations

	

No distinction is currently made between FASTA and FASTQ reads.

Todo

Create an IRead abstract base class and subclass for FASTA and FASTQ record
types. This would remove wasted fields for FASTA records and allow the type
of records being used at any level of processing.

Read pairs are two reads bound together in a STL pair. This is intended to
track sequences with paired ends.

Read Parsers

C++ API

Read parsers create the aforementioned Read objects. The
lib/read_parsers.hh file declares an abstract base class as well as
FASTA and FASTQ parsers derived from that. These are made available from
within a namespace which encapsulates most classes in the
lib/read_parsers.hh file.

	
class IParser

	

	
class FastaParser

	

	
class FastqParser

	

An instance of the appropriate subclass is created via a factory method
provided by the abstract class. This method infers the correct subclass
instance to create based on file name extension. The file name is required but
the other arguments are optional. If the other arguments are supplied, then
they override the defaults from the active Config object.

	
IParser* const IParser::get_parser(std::string const& ifile_name, uint32_t const number_of_threads, uint64_t const cache_size, uint8_t const trace_level)

	

Todo

Sniff file type rather than rely on extension.

Just as the CacheManager maintains per-thread state in
CacheSegment objects, the parser classes maintain per-thread state
in special objects as well.

	
class ParserState

	

The parser state maintains a line buffer, among other things, and tracks how
much of it has been parsed by each call to the parser.

The IParser interface provides some useful methods.

	
bool IParser::is_complete()

	

	
void IParser::imprint_next_read(Read& the_read)

	

	
void IParser::imprint_next_read_pair(ReadPair& the_read_pair, uint8_t mode=PAIR_MODE_ERROR_ON_UNPAIRED)

	

The is_complete() method checks if parsing of the current stream is
complete and blocks in a synchronization barrier if it is but some threads are
still working.

The imprint_next_read() method attempts to parse another read from
the file stream and create a Read object from it. Note that a
legacy method get_next_read is still available but its use in new code is
discouraged. The legacy method involves an additional memory copy.

The imprint_next_read_pair() method attempts to parse a pair of reads
from the file stream a create a ReadPair object from them. Currently, this
has two implemented modes of operation with a third one planned. The modes are
PAIR_MODE_ALLOW_UNPAIRED, PAIR_MODE_IGNORE_UNPAIRED, and
PAIR_MODE_ERROR_ON_UNPAIRED. The first one is not yet implemented; it may
be useful for filtering or diverting paired or unpaired reads out of a stream.
The PAIR_MODE_IGNORE_UNPAIRED mode simply ignores unpaired reads and only
returns paired reads. The PAIR_MODE_ERROR_ON_UNPAIRED mode raises an
exception if an unpaired read is encountered. As a note, both the old-style
(“/1” and “/2”) and new-style (“1...” and “2:...”) Illumina read pairs are
detected from sequence identifiers.

Todo

Implement PAIR_MODE_ALLOW_UNPAIRED mode.

Todo

Place burden of input parsing and output formatting on Read
obects rather than on parser methods. Demote parsers to role of facilitator.
Maybe?

Python Wrapper

The Python wrapper exposes a read parser class.

	
class khmer.ReadParser

	

This class has no subclasses, but handles various formats appropriately. An
instance of the class is an iterator, which produces one read at a time. There
is also a method for iterating over read pairs and the class exposes the same
constants for controlling its behavior as the underlying C++ class does.

	
ReadParser.iter_read_pairs(pair_mode)

	

k-mer Counters and Bloom Filters

C++ API

The Bloom filter counting is described elsewhere and so we won’t go into
details of it here. Some of the methods of the hash tables has been granted
thread safety and can use the thread-safe IParser objects.

	
class Hashtable

	

	
class Hashbits

	

	
void Hashtable::consume_fasta(IParser* parser, unsigned int& total_reads, unsigned long long& n_consumed, HashIntoType lower_bound, HashIntoType upper_bound, CallbackFn callback, void* callback_data)

	

	
void Hashbits::consume_fasta_and_tag(IParser* parser, unsigned int& total_reads, unsigned long long& n_consumed, CallbackFn callback, void* callback_data)

	

For legacy support, methods with signatures that have a file name parameter
rather than a IParser parameter are still provided as well. (They
wrap the ones with the parser parameter.)

As with the cache managers and read parsers, the hashtables track per-thread
state.

	
class Hasher

	

Since more than one pool of threads (e.g., one set of threads per reads parser
and one reads parser per file stream) may be used with a particular hash table
object, the hash table objects internally maintain the notion of thread pools.
The universally unique identifier (UUID) of an object (e.g., a reads parser) is
used to map to the correct thread pool. This is behind-the-scenes accounting
and a developer should generally not have to worry about this. But, if you are
converting another method to be thread-safe and it can take different reads
parsers on different invocations, then be sure to consider this.

Todo

Drop more logic currently implemented in Python to C++ to gain
multi-threading efficiencies. Not everything can really scale well using the
existing interfaces working in Python.

Todo

Cache k-mers to hash in small buckets which correspond to regions of the
hash tables. This will allow for multiple updates per memory page and reduce
the number of CPU cache misses.

Todo

Abstact the counter storage from the hash functions. A number of open issues
can be addressed by doing this. The counter storage might be better
implemented with partial template specialization than with subclassing. For
small hash tables sizes, not hashing makes more sense because every possible
k-mer in the k-mer space can be addressed directly in memory. Counter
storage will be most efficient for powers-of-two numbers of bits per
counter. Blah, blah... these and other thoughts are discussed more
thoroughly in the various GitHub issues involving them.

Python Wrapper

The hash table objects have methods which take ReadParser objects
and invoke the appropriate C++ methods underneath the hood.

	
new_hashtable.consume_fasta_with_reads_parser(rparser)

	

	
new_counting_hash.consume_fasta_and_tag_with_reads_parser(rparser)

	

Todo

Convert factory functions into callable classes and properly attribute
those classes.

Python Wrapper

The Python wrapper resides in python/_khmermodule.cc. C++ code is used
to call the CPython API to bind some of the C++ classes and methods to Python
classes and methods. Some of the newer additions to the wrapper, such as the
Read and ReadParser classes should be considered models
for future additions as they expose callable classes with properties and
iterators and which look just like Python classes for the most part. Much of
the older code relies on factory functions to create objects and those objects
are not very Pythonic. The newer additions are also much less cluttered and
more readable (though the author of this sentence may be biased in this
regard).

Todo

Use SWIG to generate the interface. Maybe?

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Architecture and Design
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Miscellaneous implementation details

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Miscellaneous implementation details

Partition IDs are “stored” in FASTA files as an integer in the last
tab-separated field. Yeah, dumb, huh?

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Miscellaneous implementation details
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Development miscellany

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Development miscellany

Third-party use

We ask that third parties who build upon the codebase to do so from a
versioned release. This will help them determine when bug fixes apply and
generally make it easier to collaborate. If more intesive modifications happen
then we request that the repository is forked, again preferably from a version
tag.

Build framework

‘make’ should build everything, including tests and “development” code.

Coding standards

All plain-text files should have line widths of 80 characters or less unless
that is not supported for the particular file format.

For C++, we use Todd Hoff’s coding standard [http://www.possibility.com/Cpp/CppCodingStandard.html], and
astyle -A10 / “One True Brace Style” [http://astyle.sourceforge.net/astyle.html] indentation and
bracing. Note: @CTB needs emacs settings that work for this.

Vim users may want to set the ARTISTIC_STYLE_OPTIONS shell variable to “-A10”
and running `:%!astyle` to reformat. The four space indentation can be set
with:

set expandtab
set shiftwidth=4
set softtabstop=4

For Python, PEP 8 [http://www.python.org/dev/peps/pep-0008/] is our
standard. The `pep8` and `autopep8` Makefile targets are helpful.

Code Review

Please read 11 Best Practices for Peer Code Review [http://smartbear.com/SmartBear/media/pdfs/WP-CC-11-Best-Practices-of-Peer-Code-Review.pdf].

See also Code reviews: the lab meeting for code [http://fperez.org/py4science/code_reviews.html] and the PyCogent coding guidelines [http://pycogent.org/coding_guidelines.html].

Checklist

Copy and paste the following into a pull-request when it is ready for review:

- [] Is it mergable
- [] Did it pass the tests?
- [] If it introduces new functionality in scripts/ is it tested?
 Check for code coverage.
- [] Is it well formatted? Look at `pep8`/`pylint`, `cppcheck`, and
 `make doc` output. Use `autopep8` and `astyle -A10` if needed.
- [] Is it documented in the Changelog?

git and github strategies

Still in the works, but read this [http://scottchacon.com/2011/08/31/github-flow.html].

Make a branch on ged-lab (preferred so others can contribute) or fork the
repository and make a branch there.

Each piece or fix you are working on should have its own branch; make a pull-
request to ged-lab/master to aid in code review, testing, and feedback.

If you want your code integrated then it needs to be mergable

Example pull request update using the command line:

	Clone the source of the pull request (if needed) git clone git@github.com:mr-c/khmer.git

	Checkout the source branch of the pull request git checkout my-pull-request

	Pull in the destination of the pull request and resolve any conflicts git pull git@github.com:ged-lab/khmer.git master

	Push your update to the source of the pull request git push

	Jenkins will automatically attempt to build and test your pull requests.

Testing

./setup.py nosetest is the canonical way to run the tests. This is what
make test does.

Code coverage

Jenkins calculates code coverage for every build. Navigate to the results from
the master node first to view the coverage information.

Code coverage should never go down and new functionality needs to be tested.

Pipelines

All khmer scripts used by a published recommended analysis pipeline must be
included in scripts/ and meet the standards therein implied.

Command line scripts

Python command-line scripts should use ‘-‘ instead of ‘_’ in the name.
(Only filenames containing code for import imported should use _.)

Please follow the command-line conventions used under scripts/. This
includes most especially standardization of ‘-x’ to be hash table size,
‘-N’ to be number of hash tables, and ‘-k’ to always refer to the
k-mer size.

Command line thoughts:

If a filename is required, typically UNIX commands don’t use a flag to
specify it.

Also, positional arguments typically aren’t used with multiple files.

CTB’s overall philosophy is that new files, with new names, should
be created as the result of filtering etc.; this allows easy
chaining of commands. We’re thinking about how best to allow
override of this, e.g.

filter-abund.py <kh file> <filename> [-o <filename.keep>]

All code in scripts/ must have automated tests; see tests/test_scripts.py.
Otherwise it belongs in sandbox/.

When files are overwritten, they should only be opened to be overwritten
after the input files have been shown to exist. That prevents stupid
command like mistakes from trashing important files.

It would be nice to allow piping from one command to another where possible.
But this seems complicated.

CTB: should we squash output files (overwrite them if they exist), or not?
So far, leaning towards ‘not’, as that way no one is surprised and loses
their data.

A general error should be signaled by exit code 1 and success by 0. Linux
supports exit codes from 0 to 255 where the value 1 means a general
error. An exit code of -1 will get converted to 255.

CLI reading:

http://stackoverflow.com/questions/1183876/what-are-the-best-practices-for-implementing-a-cli-tool-in-perl

http://catb.org/esr/writings/taoup/html/ch11s06.html

http://figshare.com/articles/tutorial_pdf/643388

Python / C integration

The Python extension that wraps the C++ core of khmer lives in
khmer/_khmermodule.CC

This wrapper code is tedious and annoying so we use a static analysis tool to
check for correctness.

https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html

Developers using Ubuntu Precise will want to install the gcc-4.6-plugin-dev package

Example usage:

CC="/home/mcrusoe/src/gcc-plugin-python/gcc-python-plugin/gcc-with-cpychecker
--maxtrans=512" python setup.py build_ext 2>&1 | less

False positives abound: ignore errors about the C++ standard library. This tool
is primarily useful for reference count checking, error-handling checking, and
format string checking.

Errors to ignore: “Unhandled Python exception raised calling ‘execute’ method”,
“AttributeError: ‘NoneType’ object has no attribute ‘file’”

Warnings to address:

khmer/_khmermodule.cc:3109:1: note: this function is too complicated for the
reference-count checker to fully analyze: not all paths were analyze

Adjust –maxtrans and re-run.

khmer/_khmermodule.cc:2191:61: warning: Mismatching type in call to
Py_BuildValue with format code "i" [enabled by default]
 argument 2 ("D.68937") had type
 "long long unsigned int"
 but was expecting
 "int"
 for format code "i"

See below for a format string cheatsheet One also benefits by matching C type
with the function signature used later.

“I” for unsinged int
“K” for unsigned long long a.k.a khmer::HashIntoType.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Development miscellany
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Deploying the khmer project tools on Galaxy

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Deploying the khmer project tools on Galaxy

We are developing the support for running normalize-by-median in Galaxy [http://galaxyproject.org/].

When this is mature we will make a Galaxy Tool Shed [https://wiki.galaxyproject.org/Tool%20Shed]
version available for easier installation.

Install the tools & tool description

If your installation uses a virtualenv be sure to activate it in your terminal
before continuing.

pip install --no-clean khmer

Move to the tools directory in your Galaxy installation and copy in the
tool definition file.:

cd tools
mkdir khmer
ln -s build/khmer/scripts/normalize-by-median.xml .

Add the following to your tool_conf.xml inside the <toolbox> tag:

<section id="khmer-protocols-extra" name="khmer protocols">
<tool file="khmer/normalize-by-median.xml" />
</section>

Then (re)start Galaxy.

Single Output Usage

For one or more files into a single file:

#. Choose ‘Normalize By Median’ from the ‘khmer protocols’ section of the
‘Tools’ menu.

#. Compatible files already uploaded to your Galaxy instance should be listed.
If not then you may need to set their datatype manually [https://wiki.galaxyproject.org/Learn/Datatypes].

#. After selecting the input files specift if they are paired-interleaved
or not.

#. Specify the sample type or show the advanced parameters to set the tablesize
yourself. Consult Choosing table sizes for khmer for assistance.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Deploying the khmer project tools on Galaxy
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Known Issues

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Known Issues

Some users have reported that normalize-by-median.py will utilize more
memory than it was configured for. This is being investigated in
https://github.com/ged-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one thread.
For example, while using load-into-counting.py. If you experience this then
add “–threads=1” to your command line. This issue is being tracked in
https://github.com/ged-lab/khmer/issues/249

If your hashfile gets truncated, perhaps from a full filesystem, then our
tools currently will get stuck. This is being tracked in
https://github.com/ged-lab/khmer/issues/247 and
https://github.com/ged-lab/khmer/issues/96 and
https://github.com/ged-lab/khmer/issues/246

Paired-end reads from Casava 1.8 currently require renaming for use in
normalize-by-median and abund-filter when used in paired mode. The
integration of a fix for this is being tracked in
https://github.com/ged-lab/khmer/issues/23

annotate-partitions.py only outputs FASTA even if given a FASTQ file. This
issue is being tracked in https://github.com/ged-lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and many
threads. This issue is being tracked in
https://github.com/ged-lab/khmer/issues/75

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Known Issues
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 How to make a khmer release

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

How to make a khmer release

Michael R. Crusoe is the current release maker. This is his checklist.

	The below should be done in a clean checkout:

cd `mktemp -d`
git clone --depth 1 git@github.com:ged-lab/khmer.git
cd khmer

	(Optional) Check for updates to ez_setup.py and versioneer:

wget -N https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py
wget -N https://raw.github.com/warner/python-versioneer/master/versioneer.py

git diff ez_setup.py

git add ez_setup.py
git commit -m "new version of ez_setup.py"
or
git checkout -- ez_setup.py

git diff versioneer.py

git add versioneer.py
./setup.py versioneer
git commit -m "new version of versioneer.py"
or
git checkout -- versioneer.py

	Review the git logs since the last release and diffs (if needed) and ensure
that the Changelog is up to date:

git log --minimal --patch `git describe --tags --always --abbrev=0`..HEAD

	Review the issue list for any new bugs that will not be fixed in this
release. Add them to doc/known-issues.txt

	Verify that the build is clean: http://ci.ged.msu.edu/job/khmer-multi/

	Tag the branch with the release candidate version number prefixed by the
letter ‘v’:

new_version=1.0.1
git tag v${new_version}-rc1
git push --tags git@github.com:ged-lab/khmer.git

	Test the release candidate. Bonus: repeat on Mac OS X:

cd ..
virtualenv testenv1
virtualenv testenv2
virtualenv testenv3
virtualenv testenv4
First we test the tag

cd testenv1
source bin/activate
git clone --depth 1 --branch v${new_version}-rc1 https://github.com/ged-lab/khmer.git
cd khmer
make install
make test
normalize-by-median.py --version # double-check version number

Secondly we test via pip

cd ../../testenv2
source bin/activate
pip install --allow-external argparse -e git+https://github.com/ged-lab/khmer.git@v${new_version}-rc1#egg=khmer
cd src/khmer
make dist
make install
make test
normalize-by-median.py --version # double-check version number
cp dist/khmer*tar.gz ../../../testenv3/

Is the distribution in testenv2 complete enough to build another
functional distribution?

cd ../../../testenv3/
source bin/activate
pip install --allow-external argparse khmer*tar.gz
tar xzf khmer*tar.gz
cd khmer*
make dist
make test

	Publish the new release on the testing PyPI server:

python setup.py register --repository test

Change your PyPI credentials as documented in
https://wiki.python.org/moin/TestPyPI:

python setup.py sdist upload -r test

Test the PyPI release in a new virtualenv:

cd ../../testenv4
source bin/activate
pip install --allow-external argparse argparse screed
pip install -i https://testpypi.python.org/pypi --pre --no-clean khmer
normalize-by-median.py --version 2>&1 | awk ' { print $2 } '
cd build/khmer
make test

	Create the final tag and publish the new release on PyPI (requires an authorized account).:

cd ../../../khmer
git tag v${new_version}
python setup.py register sdist upload

	Delete the release candidate tag and push the tag updates to github.:

git tag -d v${new_version}-rc1
git push git@github.com:ged-lab/khmer.git
git push --tags git@github.com:ged-lab/khmer.git

	Make a binary wheel on OS X.:

virtualenv build
cd build
source bin/activate
pip install --allow-external argparse khmer==${new_version}
pip install wheel
cd build/khmer
./setup.py bdist_wheel upload

	Tweet about the new release. Optionally send email including the contents of
the Changelog to khmer@lists.idyll.org and khmer-announce@lists.idyll.org

Upstream sources

ez_setup.py is from https://bitbucket.org/pypa/setuptools/raw/bootstrap/

versioneer.py is from
https://raw.github.com/warner/python-versioneer/master/versioneer.py

Before major releases they should be examined to see if there are new
versions available and if the change would be useful

Explanation

Versioneer, from https://github.com/warner/python-versioneer, is used to
determine the version number and is called by Setuptools and Sphinx. See the
files versioneer.py, the top of khmer/__init__.py,
khmer/_version.py, setup.py, and doc/conf.py for the implementation.

The version number is determined through several methods: see
https://github.com/warner/python-versioneer#version-identifiers

If the source tree is from a git checkout then the version number is derived by
git describe --tags --dirty --always. This will be in the format
${tagVersion}-${commits_ahead}-${revision_id}-${isDirty}. Example:
v0.6.1-18-g8a9e430-dirty

If from an unpacked tarball then the name of the directory is queried.

Lacking either of the two git-archive will record the version number at the top
of khmer/_version.py via the $Format:%d$ and $Format:%H$ placeholders
enabled by the “export-subst” entry in .gitattributes.

Non source distributions will have a customized khmer/_version.py that contains
hard-coded version strings. (see build/*/khmer/_version.py after a
python setup.py build for an example)

ez_setup.py bootstraps setuptools (if needed) by downloading and installing an
appropriate version

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 How to make a khmer release
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Crazy ideas

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Crazy ideas

	A JavaScript preprocessor to do things like count k-mers (HLL), and do
diginorm on data as uploaded to server.

Inspired by a paper that Titus reviewed for PLoS One; not yet published.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Crazy ideas
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Contributors and Acknowledgements

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

Contributors and Acknowledgements

khmer is a product of the GED lab at Michigan State University,

http://ged.msu.edu/

—

C. Titus Brown <ctb@msu.edu> wrote the initial ktable and hashtable
implementations, as well as hashbits and counting_hash.

Jason Pell implemented many of the C++ k-mer filtering functions.

Qingpeng contributed code to do unique k-mer counting.

Adina Howe, Rosangela Canino-Koning, and Arend Hintze contributed
significantly to discussions of approaches and algorithms; Adina wrote
a number of scripts.

Jared T. Simpson (University of Cambridge, Sanger Institute) contributed
paired-end support for digital normalization.

Eric McDonald thoroughly revised many aspects of the code base, made
much of the codebase threadsafe, and otherwise improved performance
dramatically.

Michael R. Crusoe is the new maintainer of khmer.

MRC 2013-10-03

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Contributors and Acknowledgements
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 An incomplete bibliography of papers using khmer

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	khmer 1.0 documentation

An incomplete bibliography of papers using khmer

Digital normalization

Multiple Single-Cell Genomes Provide Insight into Functions of
Uncultured Deltaproteobacteria in the Human Oral Cavity. Campbell et
al., PLoS One, 2013, doi:10.1371/journal.pone.0059361. [paper link [http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0059361]]

Insights into archaeal evolution and symbiosis from the genomes of a
nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool,
Yellowstone National Park. Podar et al., Biology Direct, 2013
doi:10.1186/1745-6150-8-9.
[paper link [http://www.biology-direct.com/content/8/1/9/abstract]]

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan
Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy,
Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan
Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown.
 Created using Sphinx 1.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 An incomplete bibliography of papers using khmer
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of th