
khmer Documentation
Release 2.0-rc6+0.g4c75965.dirty

2010-2014 Michael R. Crusoe, Greg Edvenson, Jordan Fish, Adina Howe, Luiz Irber, Eric McDonald, Joshua Nahum, Kaben Nanlohy, Humberto Ortiz-Zuazaga, Jason Pell, Jared Simpson, Camille Scott, Ramakrishnan Rajaram Srinivasan, Qingpeng Zhang, and C. Titus Brown

September 04, 2015

Contents

1 What is khmer? 1

2 Details 3
2.1 Introduction to khmer . 3
2.2 Contributors and Acknowledgements . 5
2.3 Citations . 5
2.4 What’s New In khmer 2.0? . 9
2.5 Release notes . 11
2.6 The khmer user documentation . 25
2.7 The khmer developer documentation . 57
2.8 Roadmap to v2.0, v3.0, v4.0 . 78
2.9 License . 79

i

ii

CHAPTER 1

What is khmer?

The khmer software is a set of command-line tools for working with DNA shotgun sequencing data from genomes,
transcriptomes, metagenomes, and single cells. khmer can make de novo assemblies faster, and sometimes better.
khmer can also identify (and fix) problems with shotgun data. You can read more about khmer in our software paper.

khmer is free and open source software.

To install khmer, you will need a Linux or Mac computer, together with Python 2.7 or Python 3.x. See our installation
docs for detailed instructions.

To use khmer, you will generally need to work at the UNIX command line. See our command line documentation.

We have additional documentation in several places, including protocols for metagenome and mRNAseq assembly
and recipes for several common research tasks. You might also be interested in papers using or citing khmer.

To get help, please ask questions on the khmer mailing list or post an issue on GitHub.

We welcome contributions to the khmer project! We are friendly and supportive of new contributors, and have a code
of conduct. Please see our docs on getting started on khmer development.

1

https://dx.doi.org/10.12688/f1000research.6924.1
https://khmer-protocols.readthedocs.org/
https://khmer-recipes.readthedocs.org/
http://lists.idyll.org/listinfo/khmer
https://github.com/dib-lab/khmer/issues/new

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

2 Chapter 1. What is khmer?

CHAPTER 2

Details

Authors Michael R. Crusoe, Hussien F. Alameldin, Sherine Awad, Elmar Bucher, Adam Caldwell, Reed
Cartwright, Amanda Charbonneau, Bede Constantinides, Greg Edvenson, Scott Fay, Jacob Fen-
ton, Thomas Fenzl, Jordan Fish, Leonor Garcia-Gutierrez, Phillip Garland, Jonathan Gluck, Iván
González, Sarah Guermond, Jiarong Guo, Aditi Gupta, Joshua R. Herr, Adina Howe, Alex Hyer, An-
dreas Härpfer, Luiz Irber, Rhys Kidd, David Lin, Justin Lippi, Tamer Mansour, Pamela McA’Nulty,
Eric McDonald, Jessica Mizzi, Kevin D. Murray, Joshua R. Nahum, Kaben Nanlohy, Alexander Jo-
han Nederbragt, Humberto Ortiz-Zuazaga, Jeramia Ory, Jason Pell, Charles Pepe-Ranney, Zachary
N Russ, Erich Schwarz, Camille Scott, Josiah Seaman, Scott Sievert, Jared Simpson, Connor T.
Skennerton, James Spencer, Ramakrishnan Srinivasan, Daniel Standage, James A. Stapleton, Joe
Stein, Susan R Steinman, Benjamin Taylor, Will Trimble, Heather L. Wiencko, Michael Wright,
Brian Wyss, Qingpeng Zhang, en zyme, C. Titus Brown

Contact khmer-project@idyll.org

GitHub https://github.com/dib-lab/khmer

Chat https://gitter.im/dib-lab/khmer

License BSD

2.1 Introduction to khmer

2.1.1 Introduction

khmer is a library and toolkit for doing k-mer-based dataset analysis and transformations. Our focus in developing it
has been on scaling assembly of metagenomes and mRNA.

khmer can be used for a number of transformations, including inexact transformations (abundance filtering and error
trimming) and exact transformations (graph-size filtering, to throw away disconnected reads; and partitioning, to
split reads into disjoint sets). Of these, only partitioning is not constant memory. In all cases, the memory required for
assembly with Velvet or another de Bruijn graph assembler will be more than the memory required to use our software.
Our software will not increase the memory required for Velvet, either, although we may not be able to decrease the
memory required for assembly for every data set.

Most of khmer relies on an underlying probabilistic data structure known as a Bloom filter (also see Count-Min Sketch
and These Are Not The k-mers You’re Looking For), which is essentially a set of hash tables, each of different size,
with no collision detection. These hash tables are used to store the presence of specific k-mers and/or their count. The
lack of collision detection means that the Bloom filter may report a k-mer as being “present” when it is not, in fact, in
the data set; however, it will never incorrectly report a k-mer as being absent when it is present. This one-sided error
makes the Bloom filter very useful for certain kinds of operations.

3

mailto:khmer-project@idyll.org
https://github.com/dib-lab/khmer
https://gitter.im/dib-lab/khmer
http://en.wikipedia.org/wiki/Bloom_filter
http://dimacs.rutgers.edu/~graham/pubs/papers/cm-full.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111482/

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

khmer is also independent of a specific k-size (K), and currently works for K <= 32. We will be integrating code for
K<=64 soon.

khmer is implemented in C++ with a Python wrapper, which is what all of the scripts use.

Documentation for khmer is provided on the Web sites for khmer-protocols and khmer-recipes. khmer-protocols
provides detailed protocols for using khmer to analyze either a transcriptome or a metagenome. khmer-recipes pro-
vides individual recipes for using khmer in a variety of sequence-oriented tasks such as extracting reads by coverage,
estimating a genome or metagenome size from unassembled reads, and error-trimming reads via streaming k-mer
abundance.

2.1.2 Using khmer

khmer comes “out of the box” with a number of scripts that make it immediately useful for a few different operations,
including:

• normalizing read coverage (“digital normalization”)

• dividing reads into disjoint sets that do not connect (“partitioning”)

• eliminating reads that will not be used by a de Bruijn graph assembler;

• removing reads with low- or high-abundance k-mers;

• trimming reads of certain kinds of sequencing errors;

• counting k-mers and estimating data set coverage based on k-mer counts;

• running Velvet and calculating assembly statistics;

• optimizing assemblies on various parameters;

• converting FASTQ to FASTA;

and a few other random functions.

2.1.3 Practical considerations

The most important thing to think about when using khmer is whether or not the transformation or filter you’re applying
is appropriate for the data you’re trying to assemble. Two of the most powerful operations available in khmer, graph-
size filtering and graph partitioning, only make sense for assembly datasets with many theoretically unconnected
components. This is typical of metagenomic data sets.

The second most important consideration is memory usage. The effectiveness of all of the Bloom filter-based functions
(which is everything interesting in khmer!) depends critically on having enough memory to do a good job. See Setting
khmer memory usage for more information.

2.1.4 Copyright and license

Portions of khmer are Copyright California Institute of Technology, where the exact counting code was first developed.
All other code developed through 2014 is copyright Michigan State University. Portions are copyright Michigan State
University and Regents of the University of California. All the code is freely available for use and re-use under the
BSD License.

4 Chapter 2. Details

http://khmer-protocols.readthedocs.org
http://khmer-recipes.readthedocs.org

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

2.2 Contributors and Acknowledgements

khmer is a product of the Lab for Data Intensive Biology at the University of California, Davis (the succesor to the
GED lab at Michigan State University),

http://ivory.idyll.org/lab/

—

C. Titus Brown <titus@idyll.org> wrote the initial ktable and hashtable implementations, as well as hashbits and
counting_hash.

Jason Pell implemented many of the C++ k-mer filtering functions.

Qingpeng contributed code to do unique k-mer counting.

Adina Howe, Rosangela Canino-Koning, and Arend Hintze contributed significantly to discussions of approaches and
algorithms; Adina wrote a number of scripts.

Jared T. Simpson (University of Cambridge, Sanger Institute) contributed paired-end support for digital normalization.

Eric McDonald thoroughly revised many aspects of the code base, made much of the codebase thread safe, and
otherwise improved performance dramatically.

Michael R. Crusoe took over maintainership June, 2013.

Last updated by MRC on 2015-07-31

2.3 Citations

2.3.1 Software Citation

If you use the khmer software, you must cite:

Crusoe et al., The khmer software package: enabling efficient nucleotide sequence analysis. 2015.
http://dx.doi.org/10.12688/f1000research.6924.1

@article{khmer2015,
author = "Crusoe, Michael R. and Alameldin, Hussien F. and Awad, Sherine

and Bucher, Elmar and Caldwell, Adam and Cartwright, Reed and Charbonneau,
Amanda and Constantinides, Bede and Edvenson, Greg and Fay, Scott and Fenton,
Jacob and Fenzl, Thomas and Fish, Jordan and Garcia-Gutierrez, Leonor and
Garland, Phillip and Gluck, Jonathan and GonzÃ¡lez, IvÃ¡n and Guermond, Sarah
and Guo, Jiarong and Gupta, Aditi and Herr, Joshua R. and Howe, Adina and
Hyer, Alex and HÃ¤rpfer, Andreas and Irber, Luiz and Kidd, Rhys and Lin, David
and Lippi, Justin and Mansour, Tamer and McA'Nulty, Pamela and McDonald, Eric
and Mizzi, Jessica and Murray, Kevin D. and Nahum, Joshua R. and Nanlohy,
Kaben and Nederbragt, Alexander Johan and Ortiz-Zuazaga, Humberto and Ory,
Jeramia and Pell, Jason and Pepe-Ranney, Charles and Russ, Zachary N and
Schwarz, Erich and Scott, Camille and Seaman, Josiah and Sievert, Scott and
Simpson, Jared and Skennerton, Connor T. and Spencer, James and Srinivasan,
Ramakrishnan and Standage, Daniel and Stapleton, James A. and Stein, Joe and
Steinman, Susan R and Taylor, Benjamin and Trimble, Will and Wiencko, Heather
L. and Wright, Michael and Wyss, Brian and Zhang, Qingpeng and zyme, en and
Brown, C. Titus"

title = "The khmer software package: enabling efficient nucleotide
sequence analysis",

year = "2015",
month = "08",

2.2. Contributors and Acknowledgements 5

http://ivory.idyll.org/lab/
mailto:titus@idyll.org
http://dx.doi.org/10.12688/f1000research.6924.1

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

publisher = "F1000",
url = "http://dx.doi.org/10.12688/f1000research.6924.1"

}

If you use any of our published scientific methods you should also cite the relevant paper(s) as directed below. Addi-
tionally some scripts use the SeqAn library for read parsing: the full citation for that library is also included below.

To see a quick summary of papers for a given script just run it without using any command line arguments.

2.3.2 Graph partitioning and/or compressible graph representation

The load-graph.py, partition-graph.py, and find-knots.py scripts are part of the compressible
graph representation and partitioning algorithms described in:

Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT. Scaling metagenome sequence as-
sembly with probabilistic de Bruijn graphs Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13272-7.
http://dx.doi.org/10.1073/pnas.1121464109. PMID: 22847406

@article{Pell2012,
author = "Pell, Jason and Hintze, Arend and Canino-Koning, Rosangela and

Howe, Adina and Tiedje, James M. and Brown, C. Titus",
title = "Scaling metagenome sequence assembly with probabilistic de Bruijn

graphs",
volume = "109",
number = "33",
pages = "13272-13277",
year = "2012",
doi = "10.1073/pnas.1121464109",
abstract ="Deep sequencing has enabled the investigation of a wide range of

environmental microbial ecosystems, but the high memory requirements for de
novo assembly of short-read shotgun sequencing data from these complex
populations are an increasingly large practical barrier. Here we introduce a
memory-efficient graph representation with which we can analyze the k-mer
connectivity of metagenomic samples. The graph representation is based on a
probabilistic data structure, a Bloom filter, that allows us to efficiently
store assembly graphs in as little as 4 bits per k-mer, albeit inexactly. We
show that this data structure accurately represents DNA assembly graphs in low
memory. We apply this data structure to the problem of partitioning assembly
graphs into components as a prelude to assembly, and show that this reduces the
overall memory requirements for de novo assembly of metagenomes. On one soil
metagenome assembly, this approach achieves a nearly 40-fold decrease in the
maximum memory requirements for assembly. This probabilistic graph
representation is a significant theoretical advance in storing assembly graphs
and also yields immediate leverage on metagenomic assembly.",

URL = "http://www.pnas.org/content/109/33/13272.abstract",
eprint = "http://www.pnas.org/content/109/33/13272.full.pdf+html",
journal = "Proceedings of the National Academy of Sciences"

}

2.3.3 Digital normalization

The normalize-by-median.py and count-median.py scripts are part of the digital normalization algo-
rithm, described in:

A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data Brown CT,
Howe AC, Zhang Q, Pyrkosz AB, Brom TH arXiv:1203.4802 [q-bio.GN] http://arxiv.org/abs/1203.4802

6 Chapter 2. Details

http://www.seqan.de
http://dx.doi.org/10.1073/pnas.1121464109

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

@unpublished{diginorm,
author = "C. Titus Brown and Adina Howe and Qingpeng Zhang and Alexis B.

Pyrkosz and Timothy H. Brom",
title = "A Reference-Free Algorithm for Computational Normalization of

Shotgun Sequencing Data",
year = "2012",
eprint = "arXiv:1203.4802",
url = "http://arxiv.org/abs/1203.4802",

}

2.3.4 Efficient k-mer error trimming

The script trim-low-abund.py is described in:

Crossing the streams: a framework for streaming analysis of short DNA sequencing reads Zhang Q, Awad
S, Brown CT https://dx.doi.org/10.7287/peerj.preprints.890v1

@unpublished{semistream,
author = "Qingpeng Zhang and Sherine Awad and C. Titus Brown",
title = "Crossing the streams: a framework for streaming analysis of

short DNA sequencing reads",
year = "2015",
eprint = "PeerJ Preprints 3:e1100",
url = "https://dx.doi.org/10.7287/peerj.preprints.890v1"

}

2.3.5 K-mer counting

The abundance-dist.py, filter-abund.py, and load-into-counting.py scripts implement the
probabilistic k-mer counting described in:

These Are Not the K-mers You Are Looking For: Efficient Online K-mer Counting Us-
ing a Probabilistic Data Structure Zhang Q, Pell J, Canino-Koning R, Howe AC, Brown CT.
http://dx.doi.org/10.1371/journal.pone.0101271

@article{khmer-counting,
author = "Zhang, Qingpeng AND Pell, Jason AND Canino-Koning, Rosangela

AND Howe, Adina Chuang AND Brown, C. Titus",
journal = "PLoS ONE",
publisher = "Public Library of Science",
title = "These Are Not the K-mers You Are Looking For: Efficient Online

K-mer Counting Using a Probabilistic Data Structure",
year = "2014",
month = "07",
volume = "9",
url = "http://dx.doi.org/10.1371/journal.pone.0101271",
pages = "e101271",
abstract = "<p>K-mer abundance analysis is widely used for many purposes in

nucleotide sequence analysis, including data preprocessing for de novo
assembly, repeat detection, and sequencing coverage estimation. We present the
khmer software package for fast and memory efficient <italic>online</italic>
counting of k-mers in sequencing data sets. Unlike previous methods based on
data structures such as hash tables, suffix arrays, and trie structures, khmer
relies entirely on a simple probabilistic data structure, a Count-Min Sketch.
The Count-Min Sketch permits online updating and retrieval of k-mer counts in
memory which is necessary to support online k-mer analysis algorithms. On

2.3. Citations 7

https://dx.doi.org/10.7287/peerj.preprints.890v1
http://dx.doi.org/10.1371/journal.pone.0101271

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

sparse data sets this data structure is considerably more memory efficient than
any exact data structure. In exchange, the use of a Count-Min Sketch introduces
a systematic overcount for k-mers; moreover, only the counts, and not the
k-mers, are stored. Here we analyze the speed, the memory usage, and the
miscount rate of khmer for generating k-mer frequency distributions and
retrieving k-mer counts for individual k-mers. We also compare the performance
of khmer to several other k-mer counting packages, including Tallymer,
Jellyfish, BFCounter, DSK, KMC, Turtle and KAnalyze. Finally, we examine the
effectiveness of profiling sequencing error, k-mer abundance trimming, and
digital normalization of reads in the context of high khmer false positive
rates. khmer is implemented in C++ wrapped in a Python interface, offers a
tested and robust API, and is freely available under the BSD license at
github.com/dib-lab/khmer.</p>",

number = "7",
doi = "10.1371/journal.pone.0101271"

}

2.3.6 FASTA and FASTQ reading

Several scripts use the SeqAn library for FASTQ and FASTA reading as described in:

SeqAn An efficient, generic C++ library for sequence analysis Döring A, Weese D, Rausch T, Reinert K.
http://dx.doi.org/10.1186/1471-2105-9-11

@Article{SeqAn,
AUTHOR = {Doring, Andreas and Weese, David and Rausch, Tobias and Reinert,
Knut},

TITLE = {SeqAn An efficient, generic C++ library for sequence analysis},
JOURNAL = {BMC Bioinformatics},
VOLUME = {9},
YEAR = {2008},
NUMBER = {1},
PAGES = {11},
URL = {http://www.biomedcentral.com/1471-2105/9/11},
DOI = {10.1186/1471-2105-9-11},
PubMedID = {18184432},
ISSN = {1471-2105},
ABSTRACT = {BACKGROUND: The use of novel algorithmic techniques is pivotal
to many important problems in life science. For example the sequencing of
the human genome [1] would not have been possible without advanced assembly
algorithms. However, owing to the high speed of technological progress and
the urgent need for bioinformatics tools, there is a widening gap between
state-of-the-art algorithmic techniques and the actual algorithmic
components of tools that are in widespread use. RESULTS: To remedy this
trend we propose the use of SeqAn, a library of efficient data types and
algorithms for sequence analysis in computational biology. SeqAn comprises
implementations of existing, practical state-of-the-art algorithmic
components to provide a sound basis for algorithm testing and development.
In this paper we describe the design and content of SeqAn and demonstrate
its use by giving two examples. In the first example we show an application
of SeqAn as an experimental platform by comparing different exact string
matching algorithms. The second example is a simple version of the well-
known MUMmer tool rewritten in SeqAn. Results indicate that our
implementation is very efficient and versatile to use. CONCLUSION: We
anticipate that SeqAn greatly simplifies the rapid development of new
bioinformatics tools by providing a collection of readily usable, well-
designed algorithmic components which are fundamental for the field of

8 Chapter 2. Details

http://dx.doi.org/10.1186/1471-2105-9-11

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

sequence analysis. This leverages not only the implementation of new
algorithms, but also enables a sound analysis and comparison of existing
algorithms.},

}

2.4 What’s New In khmer 2.0?

2.4.1 New behavior

Streaming I/O from Unix Pipes

All scripts now accept input from named (like /dev/stdin, or that created using <(list) process substituion)
and unamed pipes (like output piped in from another program with |). The STDIN stream can also be specified using
a single dash: -.

New parameter for memory usage, and/or tablesize/number of table parameters.

There is now a -M / --max-memory-usage parameter that sets the number of tables (-N / --n_tables) and
tablesize (-x/--max-tablesize) parameters automatically to match the desired memory usage.

Digital normalization script now supports mixed paired and unpaired read input

normalize-by-median.py now supports mixed paired and unpaired (or “broken-paired”) input. Behavior can
be forced to either treat all reads as singletons or to require all reads be properly paired using --force_single
or --paired, respectively. If --paired is set, --unpaired-reads can be used to include a file of unpaired
reads. The unpaired reads will be examined after all of the other sequence files. normalize-by-median.py
--quiet can be used to reduce the amount of diagnostic output.

Mixed-pair sequence file format support

split-paired-reads.py --output-orphaned/-0 has been added to allow for orphaned reads and give
them a file to be sorted into.

Scripts now output columnar data in CSV format by default

All scripts that output any kind of columnar data now do so in CSV format, with headers. Previously this had to be en-
abled with --csv. (Affects abundance-dist-single.py, abundance-dist.py, count-median.py,
and count-overlap.py.) normalize-by-median.py --report also now outputs in CSV format.

Reservoir sampling script extracts paired reads by default

sample-reads-randomly.py now retains pairs in the output, by default. This can be overridden to match
previous behavior with --force_single.

2.4. What’s New In khmer 2.0? 9

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

2.4.2 New scripts

Estimate number of unique kmers

unique-kmers.py estimates the k-mer cardinality of a dataset using the HyperLogLog probabilistic data structure.
This allows very low memory consumption, which can be configured through an expected error rate. Even with low
error rate (and higher memory consumption), it is still much more efficient than exact counting and alternative methods.
It supports multicore processing (using OpenMP) and streaming, and so can be used in conjunction with other scripts
(like normalize-by-median.py and filter-abund.py). This is the work of Luiz Irber and it is the subject
of a paper in draft.

2.4.3 Incompatible changes

New datastructure and script names

For clarity the Count-Min Sketch based data structure previously known as “counting_hash” or “counting_table” and
variations of these is now known as countgraph. Likewise with the Bloom Filter based data structure previously
known at “hashbits”, “presence_table” and variations of these is now known as nodegraph. Many options relating
to table have been changed to graph.

Binary file formats have changed

All binary khmer formats (presence tables, counting tables, tag sets, stop tags, and partition subsets) have changed.
Files are now pre-pended with the string OXLI to indicate that they are from this project.

Files of the above types made in previous versions of khmer are not compatible with v2.0; the reverse is also true.

In addition to the OXLI string, the Nodegraph and Countgraph file format now includes the number of occupied bins.
See khmer/Oxli Binary File Formats for details.

load-graph.py no longer appends .pt to the specified filename

Previously, load-graph.py‘ appended a .pt extension to the specified output filename and
partition-graph.py appended a .pt to the given input filename. Now, load-graph.py writes to
the specified output filename and partition-graph.py does not append a .pt to the given input filename.

Some reporting options have been turned always on

The total number of unique k-mers will always be reported every time a new countgraph is made.
The --report-total-kmers option has been removed from abundance-dist-single.py,
filter-abund-single.py, and normalize-by-median.py to reflect this. Likewise with
write-fp-rate for load-into-counting.py and load-graph.py; the false positive rate will al-
ways be written to the .info files.

An uncommon error recovery routine was removed

To simplify the codebase --save-on-failure and its helper option --dump-frequency have been removed
from normalize-by-median.py.

10 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Single file output option names have been normalized

--out is now --output for both normalize-by-median.py and trim-low-abund.py .

Miscellaneous changes

The common option --min-tablesize was renamed to --max-tablesize to reflect this more desirable be-
havior.

In conjuction with the new split-paired-reads.py --output-orphaned option, the option
--force-paired/-p has been eliminated.

As CSV format is now the default, the --csv option has been removed.

Removed script

count-overlap.py has been removed.

2.5 Release notes

Contents:

2.5.1 khmer v1.0 release notes

582 changed files with 40,527 additions and 31,772 deletions.

The team has been hard at work since v0.8 to refine the codebase into a stable product.

https://khmer.readthedocs.org/en/latest/

With the 1.0 release we are making a commitment to using Semantic Versioning[0]: the version number will reflect
the impact of the changes between releases. New major versions will likely require you to change how you use the
project. Minor versions indicate new functionality that doesn’t impact the existing. Patch versions indicate backwards-
compatible fixes. Right now we are limiting this promise to the command-line interface. A future release will introduce
a stable and mature Python API to the khmer project and at that time we will extend the version system to include that
API.

New items of note:

CITATION: Each script now outputs information on how to cite it. There is a new paper to describes the project
overall: MR Crusoe et al., 2014. doi: 10.6084/m9.figshare.979190

The documentation for the scripts has undergone an overhaul. The scripts now output extensive notes and the formal
documentation website is generated from the scripts themselves and will never be out of sync.

https://khmer.readthedocs.org/en/latest/scripts.html

Notable bugs fixed/issues closed:

git clone of the khmer repo reqs > 0.5 GiB #223 @mr-c new khmer/file module #357 @RamRS Floating point excep-
tion in count-overlap.py #282 @qingpeng add documentation for sample-reads-randomly #192 @mr-c only build zlib
and bzip2 when needed #168 @mr-c

2.5. Release notes 11

http://khmer.readthedocs.org/en/v1.4.1/user/scripts.html#count-overlap-py
https://khmer.readthedocs.org/en/latest/
https://khmer.readthedocs.org/en/latest/scripts.html

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Minor updates

khmer tools should output intelligent error messages when fed empty files #135 @RamRS set
IParser::ParserState::ParserState:fill_id to zero at initialization #356 @mr-c demote nose & sphinx to extra de-
pendencies. #351 @mr-c CID 1054792 (Medium) Uninitialized scalar field (UNINIT_CTOR) #179 @mr-c CID
1077117 (Medium): Division or modulo by zero (DIVIDE_BY_ZERO) #182 @mr-c if –savehash is specified
then don’t continue if there is not enough free disk space #245 @RamRS finish fixing implicit downcasts #330
@mr-c Clean up compile warnings in subset.cc #172 @mr-c all scripts need to output their version #236 @mr-c
environmental variables need documenting #303 @mr-c C++ code should be consistently formatted #261 @mr-c
Clean up ancillary files #146 @mr-c squash option not implemented in abundance-dist-single.py #271 @RamRS Add
documentation on how to tie into a particular tagged version #29 @mr-c pip install -e fails with compile error #352
@mr-c remove the unused KTable object #337 @luizirber zlib 1.2.3 -> zlib 1.2.8 #336 @mr-c CID 1173035: Unini-
tialized scalar field (UNINIT_CTOR) #311 @mr-c CID 1153101: Resource leak in object (CTOR_DTOR_LEAK)
#309 @mr-c remove khmer::read_parsers::IParser::ParserState::thread_id #323 @mr-c several modifications about
count-overlap.py script #324 @qingpeng fixed runscript to handle SystemExit #332 @ctb CID 1063852: Uninitialized
scalar field (UNINIT_CTOR) #313 @mr-c [infrastructure] update to new Doxyfile format, make version number
autoupdate #315 @mr-c Removed an extraneous using namespace khmer; in kmer.hh, #276 @fishjord Minimum and
recommended python version #94 @mr-c KmerCount class appears to be unused #302 @mr-c If loadhash is specified
in e.g. normalize-by-median, don’t complain about default hashsize parameters #117 @RamRS

Known Issues

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more memory than it was configured for. This is
being investigated in https://github.com/dib-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one thread. For example, while using load-
into-counting.py. If you experience this then add “–threads=1” to your command line. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/249

If your k-mer table (hashfile) gets truncated, perhaps from a full filesystem, then our tools currently will get stuck.
This is being tracked in https://github.com/dib-lab/khmer/issues/247 and https://github.com/dib-lab/khmer/issues/96
and https://github.com/dib-lab/khmer/issues/246

Paired-end reads from Casava 1.8 currently require renaming for use in normalize-by-median and abund-filter when
used in paired mode. The integration of a fix for this is being tracked in https://github.com/dib-lab/khmer/issues/23

annotate-partitions.py only outputs FASTA even if given a FASTQ file. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and many threads. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/75

Contributors

@camillescott, @mr-c, @ctb, @luizirber, @RamRS, @qingpeng

[0] http://semver.org/

2.5.2 khmer v1.0.1 release notes

This is bugfix release. Note: the installation instructions have been slightly simplified.

https://khmer.readthedocs.org/en/v1.0.1/

12 Chapter 2. Details

https://github.com/dib-lab/khmer/issues/266
https://github.com/dib-lab/khmer/issues/249
https://github.com/dib-lab/khmer/issues/247
https://github.com/dib-lab/khmer/issues/96
https://github.com/dib-lab/khmer/issues/246
https://github.com/dib-lab/khmer/issues/23
https://github.com/dib-lab/khmer/issues/46
https://github.com/dib-lab/khmer/issues/75
http://semver.org/
https://khmer.readthedocs.org/en/v1.0.1/

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

New items of note:

This release successfully installs and passes its unit tests on Debian 6.0 “Squeeze”, Debian 7.0 “Wheezy”, Fedora 19,
OS X 7 “Lion”, OS X 8 “Mountain Lion”, Red Hat Enterprise Linux 6, Scientific Linux 6, Ubuntu 10.04 LTS, and
Ubuntu 12.04 LTS. Thanks to the UW-Madison Build and Test Lab for their testing infrastructure.

Notable bugs fixed/issues closed:

fixed thread hanging issue #406 @ctb Explicit python2 invocation #404 @mr-c MANIFEST.in,setup.py: fix to correct
zlib packaging #365 @mr-c fixed check_space_for_hashtable to use args.n_tables #382 @ctb Bug fix: make-initial-
stoptags.py error on missing .ht input file, actual input file is .pt #391 @mr-c

Minor updates

include calc-best-assembly.py in v1.0.1 #409 @ctb updated normalize-by-median documentation for loadtable #378
@ctb updated diginorm for new FP rate info; corrected spelling error #398 @ctb Add spellcheck to code review
checklist. #397 @ctb

Known Issues

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more memory than it was configured for. This is
being investigated in https://github.com/dib-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one thread. For example, while using load-
into-counting.py. If you experience this then add “–threads=1” to your command line. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/249

If your k-mer table (hashfile) gets truncated, perhaps from a full filesystem, then our tools currently will get stuck.
This is being tracked in https://github.com/dib-lab/khmer/issues/247 and https://github.com/dib-lab/khmer/issues/246

Paired-end reads from Casava 1.8 currently require renaming for use in normalize-by-median and abund-filter when
used in paired mode. The integration of a fix for this is being tracked in https://github.com/dib-lab/khmer/issues/23

annotate-partitions.py only outputs FASTA even if given a FASTQ file. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and many threads. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/75

Contributors

@mr-c, @ctb, @luizirber, @RamRS, @ctSkennerton

2.5.3 khmer v1.1 release notes

This is v1.1, a minor version release; this version adds several new scripts.

Docs at: https://khmer.readthedocs.org/en/v1.1/

Release notes w/links: https://github.com/dib-lab/khmer/releases/tag/v1.1

2.5. Release notes 13

https://www.batlab.org/
http://submit-1.batlab.org/nmi/results/details?runID=247153
https://github.com/dib-lab/khmer/issues/266
https://github.com/dib-lab/khmer/issues/249
https://github.com/dib-lab/khmer/issues/247
https://github.com/dib-lab/khmer/issues/246
https://github.com/dib-lab/khmer/issues/23
https://github.com/dib-lab/khmer/issues/46
https://github.com/dib-lab/khmer/issues/75
https://khmer.readthedocs.org/en/v1.1/
https://github.com/dib-lab/khmer/releases/tag/v1.1

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

New items of note:

• removed unnecessary files from PyPI package; distribution is now under 2 MB (#419) @mr-c

• tests are now distributed with package and can be run after ‘pip install’ (#451) @mr-c

• complain properly on file read failures (#333) @ctb

• Sequence loading scripts will now report total numbers of k-mers if given –report_total_kmers (#491/#429)
@mr-c

• added metagenome protocol to acceptance testing (#472) @SherineAwad @ctb

Notable bugs fixed/issues closed:

• removed sandbox/load-into-hashbits.py (superseded by scripts/load-graph.py –no-tagset) (#480, @wrightmhw)

• promoted extract-long-sequences.py to scripts (#461, @wrightmhw)

• promoted fastq-to-fasta.py to scripts (#436, @wrightmhw)

• remove incorrect filesystem space check from abundance-dist.py (#452, @chuckpr)

• when counting hash writes fail, produce error message (#411, @znruss)

• removed a number of memory leaks found by Coverity and valgrind (#451, @mr-c)

• updated reservoir sampling to produce multiple subsamples with -S (#197, @ctb)

• fixed pip2, python2 issues (#428 and #485, @accaldwell @mr-c)

• removed untested/unused code and scripts (#438, @mr-c)

Known issues:

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more memory than it was configured for. This is
being investigated in https://github.com/dib-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one thread. For example, while using load-
into-counting.py. If you experience this then add “–threads=1” to your command line. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/249

If your k-mer table is truncated on write, an error may not be reported; this is being tracked in https://github.com/dib-
lab/khmer/issues/443. However, khmer will now (correctly) fail when trying to read a truncated file (See #333).

Paired-end reads from Casava 1.8 currently require renaming for use in normalize-by-median and abund-filter when
used in paired mode. The integration of a fix for this is being tracked in https://github.com/dib-lab/khmer/issues/23

Some scripts only output FASTA even if given a FASTQ file. This issue is being tracked in https://github.com/dib-
lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and many threads. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/75

Contributors

@mr-c, @ctb, @camillescott, @wrightmhw, @chuckpr, @luizirber, @accaldwell, @znruss

14 Chapter 2. Details

https://github.com/dib-lab/khmer/issues/266
https://github.com/dib-lab/khmer/issues/249
https://github.com/dib-lab/khmer/issues/443
https://github.com/dib-lab/khmer/issues/443
https://github.com/dib-lab/khmer/issues/23
https://github.com/dib-lab/khmer/issues/46
https://github.com/dib-lab/khmer/issues/46
https://github.com/dib-lab/khmer/issues/75

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

2.5.4 khmer v1.2 release notes

This is the v1.2 release of khmer: minor new features and bug fixes. The start of this release cycle coincided with the
Mozilla Science Lab Global Sprint 2014. We honor and thank the 19 new contributors (including four Michigan State
University undergraduates) who volunteered their time to contribute!

Docs at: https://khmer.readthedocs.org/en/v1.2/

New items of note:

@mr-c and @ctb are proud to announce khmer’s code of conduct http://khmer.readthedocs.org/en/v1.2/dev/CODE_OF_CONDUCT.html
#664 All scripts list which files have been created during their execution #477 @bocajnotnef All scripts now only
output status messages to STDERR instead of STDOUT #626 @b-wyss docs/ a fairly major re-organization and
brand new developer docs @ctb @mr-c load-into-counting.py: --summary-info: machine readable summary in
JSON or TSV format #649 @kdmurray91 scripts/extract-partitions.py: added documentation for .dist columns #516
@chuckpr Makefile: a new target make install-dependencies is useful for developers #539 @mr-c Sandbox
scripts have been cleaned up, or removed (see the sandbox/README.rst for details) #589 @ctb

Notable bugs fixed/issues closed:

do-partition.py’s excessive spawning of threads fixed. #637 @camillescott Fixed unique k-mer count reporting in
load-graph, load-into-counting, and normalize-by-median. #562 @mr-c Clarified and test the requirement for a 64-
bit operating system #529 @Echelon9 Removed some of the broken multi-threading options #511 @majoras-masque
Fix table.get(“wrong_length_string”) gives core dump #585 @Echelon9 filter-abund lists parameters that it doesn’t use
#524 @jstapleton Reduction of memory required to run the test suite #542 @leogargu BibTeX included in CITATIONS
#541 @HLWiencko

Additional fixes/features

delete ScoringMatrix::assign as it is unused #502 @RodPic Root all of our C++ exceptions to a common base ex-
ception #508 @iglpdc deleted KhmerError #503 @drlabratory normalize-by-median reporting output after main loop
exits, in case it hadn’t been triggered #586 @ctb Many issues discovered by cppcheck cleaned up #506 @brtay-
lor92 Developers have a new Makefile target to autofix formatting: make format #612 @brtaylor92 normalize-by-
median.py test coverage increased #361 @SherineAwad Several unused functions were removed #599 @brtaylor92
Developer docs now link to the stdc++ docs as appropriate #629 @mr-c Added tests for non-sequential access to input
files #644 @bocajnotnef Removed khmer/theading_args.py #653 @bocajnotnef Improved test for maximum k value
#658 @pgarland ReadParser no longer crashes if n_threads = 0 #86 @jiarong

Known issues:

All of these are pre-existing.

Multithreaded reading will drop reads. This major issue has been present for several khmer releases and was only found
via a much larger test case that we had been previously using. Credit to @camillescott. Workaround: disable threading.
The next release will fix this and the other FAST[AQ] parsing issues. https://github.com/dib-lab/khmer/issues/681

Some users have reported that normalize-by-median.py will utilize more memory than it was configured for. This is
being investigated in https://github.com/dib-lab/khmer/issues/266

Some FASTQ files confuse our parser when running with more than one thread. For example, while using load-
into-counting.py. If you experience this then add “–threads=1” to your command line. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/249

2.5. Release notes 15

https://khmer.readthedocs.org/en/v1.2/
http://khmer.readthedocs.org/en/v1.2/dev/CODE_OF_CONDUCT.html
https://github.com/dib-lab/khmer/issues/681
https://github.com/dib-lab/khmer/issues/266
https://github.com/dib-lab/khmer/issues/249

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

If your k-mer table is truncated on write, an error may not be reported; this is being tracked in https://github.com/dib-
lab/khmer/issues/443. However, khmer will now (correctly) fail when trying to read a truncated file (See #333).

Paired-end reads from Casava 1.8 currently require renaming for use in normalize-by-median and abund-filter when
used in paired mode. The integration of a fix for this is being tracked in https://github.com/dib-lab/khmer/issues/23

Some scripts only output FASTA even if given a FASTQ file. This issue is being tracked in https://github.com/dib-
lab/khmer/issues/46

A user reported that abundance-dist-single.py fails with small files and many threads. This issue is being tracked in
https://github.com/dib-lab/khmer/issues/75

Contributors

@mr-c, @ctb, *@bocajnotnef, *@Echelon9, *@jlippi, *@kdmurray91, @qingpeng, *@leogargu, *@jiarong,
*@brtaylor92, *@iglpdc, @camillescott, *@HLWiencko, *@cowguru2000, *@drlabratory, *@jstapleton, *@b-
wyss, *@jgluck, @fishjord, *@SherineAwad, *@pgarland, *@majoras-masque, @chuckpr, *@RodPic, @luizirber,
*@jrherr

* Denotes new contributor

2.5.5 khmer v1.3 release notes

This is the v1.3 release of khmer featuring a new FAST[AQ] parser from the SeqAn project.

Docs at: https://khmer.readthedocs.org/en/v1.3/

New items of note:

Fixes the two multithreaded reading of sequence files issues: FASTQ parsing and the recently found read dropping
issue. Several khmer scripts now support reading from non-seekable plain and gziped FAST[AQ] files (a.k.a pipe or
streaming support). @mr-c #642

Notable bugs fixed/issues closed:

restore threading to load-graph.py #699 @mr-c

Additional fixes/features

increase filter_abund.py coverage #568 @wrightmhw Provide scripts/ testing coverage for check_space_for_hashtable
#386 #678 #718 @b-wyss Use absolute URI in CODE_OF_CONDUCT #684 @jsspencer give SeqAn credit #712
@mr-c Added testing to make sure all sandbox scripts are import-able and execfile-able. #709 @ctb reduce memory
requirements to run tests #701 @ctb Two minor bug fixes to sandbox scripts #706 @ctb Upgrade of trim-low-abund
for better, more profitable streaming. #601 @ctb Add –force or –expert or –ignore flag to all khmer scripts that do
sanity checking #399 #647 @jessicamizzi Add XDECREF for returned read tuple in ReadParser.read_pair_iterator()
#693 @mr-c @camillescott

Known issues:

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more memory than it was configured for. This is
being investigated in #266

16 Chapter 2. Details

https://github.com/dib-lab/khmer/issues/443
https://github.com/dib-lab/khmer/issues/443
https://github.com/dib-lab/khmer/issues/23
https://github.com/dib-lab/khmer/issues/46
https://github.com/dib-lab/khmer/issues/46
https://github.com/dib-lab/khmer/issues/75
mailto:*@bocajnotnef
mailto:*@Echelon9
mailto:*@jlippi
mailto:*@kdmurray91
mailto:*@leogargu
mailto:*@jiarong
mailto:*@brtaylor92
mailto:*@iglpdc
mailto:*@HLWiencko
mailto:*@cowguru2000
mailto:*@drlabratory
mailto:*@jstapleton
mailto:*@b-wyss
mailto:*@b-wyss
mailto:*@jgluck
mailto:*@SherineAwad
mailto:*@pgarland
mailto:*@majoras-masque
mailto:*@RodPic
mailto:*@jrherr
https://khmer.readthedocs.org/en/v1.3/

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

If your k-mer table is truncated on write, an error may not be reported; this is being tracked in https://github.com/dib-
lab/khmer/issues/443. However, khmer will now (correctly) fail when trying to read a truncated file (See #333).

Paired-end reads from Casava 1.8 currently require renaming for use in normalize-by-median and abund-filter when
used in paired mode. The integration of a fix for this is being tracked in #23

Some scripts only output FASTA even if given a FASTQ file. This issue is being tracked in #46

A user reported that abundance-dist-single.py fails with small files and many threads. This issue is being tracked in
#75

Contributors

@mr-c, @ctb, @camillescott, @b-wyss, @wrightmhw, @jsspencer

2.5.6 khmer v1.4 release notes

This is the v1.4 release of khmer featuring the results of our March and April (PyCon) coding sprints and the 16
new contributors; the use of the new v0.8 release of screed (the library we use for pure Python reading of nucleotide
sequence files); and the addition of @luizirber’s HyperLogLog counter for quick cardinality estimation.

Documentation is at https://khmer.readthedocs.org/en/v1.4/

New items of note:

Casava 1.8 read naming is now fully supported and in general the scripts no longer mangle read names. Side bene-
fits: split-paired-reads.py will no longer drop reads with ‘bad’ names; count-median.py can generate
output in CSV format. #759 #818 @ctb #873 @ahaerpfer

Most scripts now support a “broken” interleaved paired-read format for FASTA/ FASTQ nucleotide sequence files.
‘trim-low-abund.py <http://khmer.readthedocs.org/en/v1.4/user/scripts.html#trim-low-abund-py>‘__ has been
promoted from the sandbox as well (with streaming support). #759 @ctb #963 @sguermond #933 @standage

The script to transform an interleaved paired-read nucleotide sequence file into two files now allows one to name the
output files which can be useful in combination with named pipes for streaming processing #762 @ctb

Streaming everywhere: thanks to screed v0.8 we now support streaming of almost all inputs and outputs. #830
@aditi9783 #812 @mr-c #917 @bocajnotnef #882 @standage

Need a quick way to count total number of unique k-mers in very low memory? the unique-kmers.py script in
the sandbox uses a HyperLogLog counter to quickly (and with little memory) provide an estimate with a controllable
error rate. #257 #738 #895 #902 @luizirber

normalize-by-median.py can now process both a paired interleaved sequence file and a file of unpaired reads
in the same invocation thus removing the need to write the counting table to disk as required in the workaround. #957
@susinmotion

Notable bugs fixed/issues closed:

Paired-end reads from Casava 1.8 no longer require renaming for use in normalize-by-median.py and
abund-filter.py when used in paired mode #818 @ctb

Python version support clarified. We do not (yet) support Python 3.x #741 @mr-c

If a single output file mode is chosen for normalize-by-median.py we now default to overwriting the output. Appending
the output is available by using the append redirection operator from the shell. #843 @drtamermansour

2.5. Release notes 17

https://github.com/dib-lab/khmer/issues/443
https://github.com/dib-lab/khmer/issues/443
https://khmer.readthedocs.org/en/v1.4/
http://khmer.readthedocs.org/en/v1.4/user/scripts.html#trim-low-abund-py

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Scripts that consume sequence data using C++ will now properly throw an error on truncated files. #897 @kdmurray91
And while writing to disk we properly check for errors #856 #962 @mr-c

abundance-dist-single.py no longer fails with small files and many threads. #900 @mr-c

Additional fixes/features

Of interest to users:

Many documentation updates #753 @PamelaM, #782 @bocajnotnef, #845 @alameldin, #804 @ctb, #870
@SchwarzEM, #953 #942 @safay, #929,@davelin1, #687 #912 #926 @mr-c

Installation instructions for Conda, Arch Linux, and Mac Ports have been added #723 @reedacartwright #952 @elm-
beech #930 @ahaerpfer

The example script for the STAMPS database has been fixed to run correctly #781 @drtamermansour

split-paired-reads.py: added -o option to allow specification of an output directory #752 @bede

Fixed a string formatting and a boundary error in sample-reads-randomly.py #773 @qingpeng #995 @ctb

CSV output added to abundance-dist.py, abundance-dist-single.py, and count-overlap.py,
and readstats.py #831 #854 #855 @drtamermansour #959 @anotherthomas

TSV/JSON output of load-into-counting.py enhanced with the total number of reads processed #996 @kd-
murray91 Output files are now also checked to be writable before loading the input files #672 @pgarland @bocajnotnef

interleave-reads.py now prints the output filename nicely #827 @kdmurray91

Cleaned up error for input file not existing #772 @jessicamizzi #851 @ctb

Fixed error in find-knots.py #860 @TheOneHyer

The help text for load-into-counting.py for the --no-bigcounts/-b flag has been clarified #857 @kd-
murray91

@lexnederbragt confirmed an old bug has been fixed with his test for whitespace in sequence identifiers interacting
with the extract-partitions.py script #979

Now safe to copy-and-paste from the user documentation as the smart quotes have been turned off. #967 @ahaerpfer

The script make-coverage.py has been restored to the sandbox. #920 @SherineAwad

normalize-by-median.py will warn if two of the input files have the same name #932 @elmbeech

Of interest to developers:

Switched away from using --user install for developers #740 @mr-c @drtamermansour & #883 @standage

Developers can now see a summary of important Makefile targets via make help #783 @standage

The unused khmer.load_pe module has been removed #828 @kdmurray91

Versioneer bug due to new screed release was squashed #835 @mr-c

A Python 2.6 and 2.7.2 specific bug was worked around #869 @kdmurray91 @ctb

Added functions hash_find_all_tags_list and hash_get_tags_and_positions to CountingHash objects #749 #765 @ctb

The make diff-cover and ChangeLog formatting requirements have been added to checklist #766 @mr-c

A useful message is now presented if large tables fail to allocate enough memory #704 @mr-c

18 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

A checklist for developers adding new CPython types was added #727 @mr-c

The sandbox graduation checklist has been updated to include streaming support #951 @sguermond

Specific policies for sandbox/ and scripts/ content, and a process for adding new command line scripts into scripts/
have been added to the developer documentation #799 @ctb

Sandbox scripts update: corrected #! Python invocation #815 @Echelon9, executable bits, copyright headers, no
underscores in filenames #823 #826 #850 @alameldin several scripts deleted, docs + requirements updated #852
@ctb

Avoid running big-memory tests on OS X #819 @ctb

Unused callback code was removed #698 @mr-c

The CPython code was updated to use the new checklist and follow additional best practices #785 #842 @luizirber

Added a read-only view of the raw counting tables #671 @camillescott #869 @kdmurray91

Added a Python method for quickly getting the number of underlying tables in a counting or presence table #879 #880
@kdmurray91

The C++ library can now be built separately for the brave and curious developer #788 @kdmurray91

The ReadParser object now keeps track of the number of reads processed #877 @kdmurray91

Documentation is now reproducible #886 @mr-c

Python future proofing: specify floor division #863 @mr-c

Miscellaneous spelling fixes; thanks codespell! #867 @mr-c

Debian package list update #984 @mr-c

khmer.kfile.check_file_status() has been renamed to check_input_files() #941 @proteasome
filter-abund.py now uses it to check the input counting table #931 @safay

normalize-by-median.py was refactored to not pass the ArgParse object around #965 @susinmotion

Developer communication has been clarified #969 @sguermond

Tests using the ‘fail_okay=true’ parameter to runscript have been updated to confirm the correct error occurred. 3
faulty tests were fixed and the docs were clarified #968 #971 @susinmotion

FASTA test added for extract-long-sequences.py #901 @jessicamizzi

‘added silly test for empty file warning’ #557 @wltrimbl @bocajnotnef

A couple tests were made more resilient and some extra error checking added in CPython land #889 @mr-c

Copyright added to pull request checklist #940 @sguermond

khmer_exceptions are now based on std::strings which plugs a memory leak #938 @anotherthomas

Python docstrings were made PEP257 compliant #936 @ahaerpfer

Some C++ comments were converted to be Doxygen compliant #950 @josiahseaman

The counting and presence table warning logic was refactored and centralized #944 @susinmotion

The release checklist was updated to better run the post-install tests #911 @mr-c

The unused method find_all_tags_truncate_on_abundance was removed from the CPython API #924
@anotherthomas

OS X warnings quieted #887 @mr-c

2.5. Release notes 19

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Known issues:

All of these are pre-existing.

Some users have reported that normalize-by-median.py will utilize more memory than it was configured for. This is
being investigated in https://github.com/dib-lab/khmer/issues/266

Some scripts only output FASTA even if given a FASTQ file. This issue is being tracked in https://github.com/dib-
lab/khmer/issues/46

Contributors

@ctb, @kdmurray91, @mr-c, @drtamermansour, @luizirber, @standage, @bocajnotnef, *@susinmotion,
@jessicamizzi, *@elmbeech, *@anotherthomas, *@sguermond, *@ahaerpfer, *@alameldin, *@TheOneHyer,
*@aditi9783, *@proteasome, *@bede, *@davelin1, @Echelon9, *@reedacartwright, @qingpeng, *@SchwarzEM,
*@scottsievert, @PamelaM, @SherineAwad, *@josiahseaman, *@lexnederbragt,

* Indicates new contributors

Issue reporters

@moorepants, @teshomem, @macmanes, @lexnederbragt, @r-gaia-cs, @magentashades

2.5.7 khmer v2.0 release notes

This is the v2.0 release of khmer and the first from our new lab at the University of California, Davis. It features
Python 3 compatibility, streaming I/O from Unix Pipes, mixed-pair sequence file format support, and a new parameter
to simplify memory usage. We also have a software paper in-press describing the project and the citation reminders
have been updated to reflect that.

Overall there are an additional 2,380 lines of Python code (mostly tests) and 283 less lines of C++ (despite adding
features). This release is the product of over 1,000 commits to the codebase since v1.4.

Documentation is at https://khmer.readthedocs.org/en/v2.0/

New items of note:

New behavior

Streaming I/O from Unix Pipes

All scripts now accept input from named (like /dev/stdin, or that created using <(list) process substituion)
and unnamed pipes (like output piped in from another program with |). The STDIN stream can also be specified using
a single dash: -. #1186 @mr-c #1042 #763 @SherineAwad #1085 @ctb

New parameter for memory usage, and/or tablesize/number of table parameters.

There is now a -M/--max-memory-usage parameter that sets the number of tables (-N/--n_tables) and ta-
blesize (-x/--max-tablesize) parameters automatically to match the desired memory usage. #1106 #621 #1126
#390 #1117 #1055 #1050 #1214 #1179 #1133 #1145 @ctb @qingpeng @bocajnotnef

20 Chapter 2. Details

https://github.com/dib-lab/khmer/issues/266
https://github.com/dib-lab/khmer/issues/46
https://github.com/dib-lab/khmer/issues/46
mailto:*@susinmotion
mailto:*@elmbeech
mailto:*@anotherthomas
mailto:*@sguermond
mailto:*@ahaerpfer
mailto:*@alameldin
mailto:*@TheOneHyer
mailto:*@aditi9783
mailto:*@proteasome
mailto:*@bede
mailto:*@davelin1
mailto:*@reedacartwright
mailto:*@SchwarzEM
mailto:*@scottsievert
mailto:*@josiahseaman
mailto:*@lexnederbragt
https://khmer.readthedocs.org/en/v2.0/

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Digital normalization script now supports mixed paired and unpaired read input

normalize-by-median.py now supports mixed paired and unpaired (or “broken-paired”) input. Behavior can
be forced to either treat all reads as singletons or to require all reads be properly paired using --force_single
or --paired, respectively. If --paired is set, --unpaired-reads can be used to include a file of unpaired
reads. The unpaired reads will be examined after all of the other sequence files. normalize-by-median.py now
has a --quiet option to reduce the amount of output. #1200 @bocajnotnef

Mixed-pair sequence file format support

split-paired-reads.py --output-orphaned/-0 has been added to allow for orphaned reads and give
them a file to be sorted into. #847 #1164 @ctb

Scripts now output columnar data in CSV format by default

All scripts that output any kind of columnar data now do so in CSV format, with headers. Previously this had to be en-
abled with --csv. (Affects abundance-dist-single.py, abundance-dist.py, count-median.py,
and count-overlap.py.) normalize-by-median.py --report also now outputs in CSV format. #1011
#1180 @ctb

Reservoir sampling script extracts paired reads by default

sample-reads-randomly.py now retains pairs in the output, by default. This can be overridden to match
previous behavior with --force_single.

Most input and output files can be compressed

We support gzip and bzip2 input and output file compression everywhere that it makes sense #505 #747 @bocajnotnef

New scripts

Estimate number of unique kmers

unique-kmers.py estimates the k-mer cardinality of a dataset using the HyperLogLog probabilistic data structure.
This allows very low memory consumption, which can be configured through an expected error rate. Even with
low error rate (and higher memory consumption), it is still much more efficient than exact counting and alternative
methods. It supports multicore processing (using OpenMP) and streaming, and so can be used in conjunction with
other scripts (like normalize-by-median.py and filter-abund.py). This script is the work of @luizirber
and the subject of a paper in draft. #390 #1239 #1252 #1053 #1072 #1145 #1176 #1207 #1204 #1245

Incompatible changes

New datastructure and script names

For clarity the Count-Min Sketch based data structure previously known as “counting_hash” or “counting_table” and
variations of these is now known as countgraph. Likewise with the Bloom Filter based data structure previously
known at “hashbits”, “presence_table” and variations of these is now known as nodegraph. Many options relating
to table have been changed to graph. #1112 #1209 @mr-c

2.5. Release notes 21

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Binary file formats have changed

All binary khmer formats (presence tables, counting tables, tag sets, stop tags, and partition subsets) have changed.
Files are now pre-pended with the string OXLI to indicate that they are from this project. #519 #1031 @mr-c #1159
@luizirber

Files of the above types made in previous versions of khmer are not compatible with v2.0; the reverse is also true.

In addition to the OXLI string, the Nodegraph and Countgraph file format now includes the number of occupied
bins. See http://khmer.readthedocs.org/en/v2.0/dev/binary-file-formats for details. #1093 @ctb @mr-c #1101 #1103
@kdmurray91

load-graph.py no longer appends .pt to the specified filename

Previously, load-graph.py appended a .pt extension to the specified output filename and partition-graph.py
appended a .pt to the given input filename. Now, load-graph.py writes to the specified output filename and
partition-graph.py does not append a .pt to the given input filename. #1189 #747 @bocajnotnef

Some reporting options have been turned always on

The total number of unique k-mers will always be reported every time a new countgraph is made.
The --report-total-kmers option has been removed from abundance-dist-single.py,
filter-abund-single.py, and normalize-by-median.py to reflect this. Likewise with
--write-fp-rate for load-into-counting.py and load-graph.py; the false positive rate will
always be written to the .info files. #1097 #1180 @ctb

An uncommon error recovery routine was removed

To simplify the codebase --save-on-failure and its helper option --dump-frequency have been removed
from normalize-by-median.py.

Single file output option names have been normalized

--out is now --output for both normalize-by-median.py and trim-low-abund.py. #1188 #1164
@ctb

Miscellaneous changes

The common option --min-tablesize was renamed to --max-tablesize to reflect this more desirable be-
havior.

In conjuction with the new split-paired-reads.py --output-orphaned option, the option
--force-paired/-p has been eliminated.

As CSV format is now the default, the --csv option has been removed.

Removed script

count-overlap.py has been removed.

22 Chapter 2. Details

http://khmer.readthedocs.org/en/v2.0/dev/binary-file-formats
http://khmer.readthedocs.org/en/v1.4.1/user/scripts.html#count-overlap-py

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Notable bugs fixed/issues closed:

When normalize-by-median.py decides to keep both parts of a pair of reads it was only adding the k-mers &
counts from one to the countgraph. #1000 #1010 @drtamermansour @bocajnotnef

The partition map file format was not robust to truncation and would hang waiting for more data. #437 #1037 #1048
@ctb

extract-paired-reads.py and split-paired-reads.py no longer create default files when the user
supplies filename(s). #1005 #1132 @kdmurray91

Additional fixes/features

find-knots.py was missing a --force option and unit tests. #358 #1078 @ctb The check for excessively high
false-positive rate has also received a --force option #1168 @bocajnotnef

A bug leading to an infinite loop with large gzipped countgraphs was found #1038 #1043 @kdmurray91

All scripts that create nodegraphs or countgraphs report the total number of unique k-mers. #491 #609 #429 @mr-c

Read pairs from SRA are fully supported. Reported by @macmanes in #1027, fixed by @kdmurray91 @SherineAwad
in #1173 #1088

Of interest to users:

Added Hashtable::get_kmers(), get_kmer_hashes(), and get_kmer_counts()with corresponding
CPython functions. #1047 #1049 @ctb

The DEFAULT_DESIRED_COVERAGE for normalize-by-median.py is now 20. #1073 #1081 @ctb

FIFOs are no longer seen as empty. #1147 #1163 @bocajnotnef

When the k-size is requested to be larger than 32 (which is unsupported) a helpful error message is reported. #1094
#1050 @ctb

We try to report more helpfully during errors, such as suggesting the --force option when outputs files already
exist. #1162 #1170 @bocajnotnef

There is a paper related to trim-low-abund.py: “Crossing the streams: a framework for streaming analysis of
short DNA sequencing reads” and it has been added to the CITATION file and program output. #1180 #1130 @ctb

We have dropped support for Python 2.6 #1009 #1180 @ctb

Our user documentation got a bit out of date and has been updated. #1156 #1247 @bocajnotnef @mr-c #1104 @kd-
murray91 #1267 @ctb Links to lists of publications that use khmer have been added #1063 #1222 @mr-c The help
text from the scripts has also had a thorough cleanup for formatting. #1268 @mr-c

fastq-to-fasta.py‘s --n_keep option has incorrect help text. We now point out that all reads with Ns will be
dropped by default unless this option is supplied. #657 #814 #1208 @ACharbonneau @bocajnotnef

We’ve updated the URL to the ‘88m-reads.fa.gz’ file. #1242 #1269 @mr-c

@camillescott designed and implemented an optimization for normalize-by-median.py #862

abundance-dist.py can now be used without counts over 255 with --no-bigcount. #1067 #909 @drtamer-
mansour @bocajnotnef Its input file requirement can no longer be overridden #1201 #1202 @bocajnotnef

khmer v2.0 will be released as a package for the Debian GNU/Linux operating system. Big thanks to @kdmurray91
for his assistance. #1148 #1240 The C++ library, now named liboxli, will have its own package as well.

sandbox/multi-rename.py now wraps long FASTA sequences at 80 columns. #450 #1136 @SherineAwad

2.5. Release notes 23

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Of interest to developers:

The khmer project is now a Python 3 codebase with backwards compatibility to Python 2.7. Huge credit to @luizir-
ber #978 #922 #1045 #1066 #1089 #1157 #1191 #1108 Many developer impacting changes including the file
khmer/_khmermodule.cc is now khmer/_khmer.cc. #169 #904

@camillescott did an extensive refactor of the C++ graph traversal code which removed a considerable amount of
redundant code and will be very useful for future work. #1231 #1080

We now use some and allow all C++11 features in the codebase. #598 #1122 @mr-c

normalize-by-median.py was extensively refactored. #1006 #1010 #1057 #1039 #1135 #1182 @bocajnotnef
@ctb @camillescott

The CPython glue was refactored so that CountingHash and Hashbits inherit from Hashtable. #1044 @ctb

The tests no longer stop on the first failed test. #1124 #1134 @ctb and some noisy tests were silenced #1125 #1137
@bocajnotnef

The check_space() calls were cleaned up. #1167 #1166 #1170 #993

Developer docs have been expanded #737 #1184 @bocajnotnef #1083 #1282 @ctb @mr-c #1269

A lot of code was deleted: TRACE related code in #274 #1180 @ctb
hashtable_collect_high_abundance_kmers in #1142 #1044 @ctb lib/ht-diff.cc,
lib/test-HashTables.cc, lib/test-Parser.cc #1144, @mr-c bink.ipynb, lib/graphtest.cc,
lib/primes.hh #1289 @mr-c

@bocajnotnef deleted more unused code and added new tests elsewhere to increase testing coverage in #1236. @mr-c
had his own go in #1279

cppcheck installation for OSX has been documented #777 #952 #945 @elmbeech

ccache and git-merge-changelog has been documented for Linux users #610 #1122 #614 @mr-c

The graphalign parameters can be saved/loaded from disk. In addition the align_forward method has been intro-
duced. #755 #750 @mr-c @ctb

labelhash is now known as graphlabels #1032 #1209 @mr-c It is also now a ‘friend’ of Hashtable and one
can make either a nodegraph or countgraph version. These graphlabels can now be saved & loaded from disk. #1021
@ctb

Spelling is hard; we’ve added instructions on how to run codespell to the developer docs. #890 #1203 @bocajnotnef

A redundant and contradictory named test has been removed. Reported by @jgluck in #662 fixed by @bocajnotnef in
#1220 @SherineAwad contributed some additional tests #809 #615.

The new oxli command, while disabled in the v2.0 release, has been added to all the QA makefile targets as we
continue to refactor the codebase. #1199 #1218 @bocajnotnef

The CPython code was audited to ensure that all possible C++ exceptions were caught and dealt with. The exception
hierarchy was also simplified #1016 #1015 #1017 #1151 @kdmurray91 @mr-c

get_kadian_count has been removed. #1034 #1194 @ctb

We use argparse’s metavars to aid with autogenerated documentation for the scripts. This has been documented in
the dev docs. #620 #1222 @mr-c

Sometimes one makes a lot of commits while refining a feature or pull request. We’ve documented a field-tested way
to turn a pile of commits into a single commit without the pain of git rebase. #1013 #660 #1222 @mr-c

We use Coverity to test for various issues with our C++ code. The Makefile target has been updated for changes on
their side. #1007 #1222 @mr-c

There is a new update() function to merge two nodegraphs of the same size and ksize. #1051 @ctb

24 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Despite the checklist, formatting errors still occur. We must be vigilant! #1075 @luizirber

There is a new filter_on_median function. #862 #1077 @camillescott

There are new scripts in the sandbox/ which output k-mer counts: sandbox/{count-kmers.py,count-kmers-
single.py}. #983 @ctb

A large effort to make the codebase ‘pylint clean’ has begun with #1175 @bocajnotnef Likewise the cpychecker tool
was re-run on the CPython code and issues found there were addressed #1196 @mr-c

As repeatedly promised, we’ve updated our list of contributors to include everyone with a commit in git. #1023 @mr-c

thread_utils.is_pair() has been dropped in favor of utils.check_is_pair() #1284 @mr-c

The Doxygen produced documentation is improving. The location of included headers is now autodetected for Doxy-
gen and cppcheck.

Known issues:

load-graph.py in multithreaded mode will find slightly different number of unique kmers. This is being investi-
gated in #1248

Contributors

@ctb, @bocajnotnef, @mr-c, @luizirber, @kdmurray91, @SherineAwad, @camillescott, *@ACharbonneau

* Indicates new contributors

Issue reporters

@jgluck, @ACharbonneau, @macmanes

2.6 The khmer user documentation

Contents:

2.6.1 Installing and running khmer

You’ll need a 64-bit operating system, internet access, and Python 2.7.x OR Python 3.3 or greater.

Build requirements

OS X

1. From a terminal download the virtualenv package and create a virtual environment with it:

curl -O https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.11.6.tar.gz
tar xzf virtualenv*
cd virtualenv-*; python2.7 virtualenv.py ../khmerEnv; cd ..
source khmerEnv/bin/activate

2.6. The khmer user documentation 25

mailto:*@ACharbonneau

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Linux

1. Install the python development environment, virtualenv, pip, gcc, and g++.

• On recent Debian and Ubuntu this can be done with:

sudo apt-get install python2.7-dev python-virtualenv python-pip gcc \
g++

• For RHEL6:

sudo yum install -y python-devel python-pip git gcc gcc-c++ make
sudo pip install virtualenv

2. Create a virtualenv and activate it:

cd a/writable/directory/
python2.7 -m virtualenv khmerEnv
source khmerEnv/bin/activate

Linux users without root access can try the OS X instructions above.

Installing khmer inside the virtualenv

1. Use pip to download, build, and install khmer and its dependencies:

pip2 install khmer

2. The scripts are now in the env/bin directory and ready for your use. You can directly use them by name, see
khmer’s command-line interface.

3. When returning to khmer after installing it you will need to reactivate the virtualenv first:

source khmerEnv/bin/activate

Run the tests

After installing you can run the embedded test suite. If you are running an OSX system you should also add !linux to
prevent linux-specific tests from failing.:

nosetests khmer --attr '!known_failing,!huge'

If the nosetests binary isn’t installed then:

pip2 install khmer[tests]
nosetests khmer --attr '!known_failing,!huge'

2.6.2 A few examples

See the examples directory for complete examples.

STAMPS data set

The ‘stamps’ data set is a fake metagenome-like data set containing two species, mixed at a 10:1 ratio. The source
genomes are in data/stamps-genomes.fa. The reads file is in data/stamps-reads.fa.gz, and consists of 100-base reads
with a 1% error rate.

26 Chapter 2. Details

https://github.com/dib-lab/khmer/tree/stable/examples
https://github.com/dib-lab/khmer/tree/stable/data/stamps-genomes.fa
https://github.com/dib-lab/khmer/tree/stable/data/stamps-reads.fa.gz

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

The example shows how to construct k-mer abundance histograms, as well as the effect of digital normalization and
partitioning on the k-mer abundance distribution.

See the script for running everything and the IPython Notebook.

For an overall discussion and some slides to explain what’s going on, visit the Web site for a 2013 HMP metagenome
assembly webinar that Titus Brown gave.

2.6.3 An assembly handbook for khmer - rough draft

date 2012-11-2

An increasing number of people are asking about using our assembly approaches for things that we haven’t yet written
(or posted) papers about. Moreover, our assembly strategies themselves are also under constant evolution as we do
more research and find ever-wider applicability of our approaches.

Note, this is modified from Titus’ blog post, here – go check the bottom of that for comments.

Authors

This handbook distills the cumulative expertise of Adina Howe, Titus Brown, Erich Schwarz, Jason Pell, Camille
Scott, Elijah Lowe, Kanchan Pavangadkar, Likit Preeyanon, and others.

Introduction

khmer is really focused on short read data, and, more specifically, Illumina, because that’s where we have a too-much-
data problem. However, a lot of the prescriptions below can be adapted to longer read technologies such as 454 and
Ion Torrent without much effort.

Don’t try to use our k-mer approaches with PacBio – the error rate is too high.

There are many blog posts about this stuff on Titus Brown’s blog. We will try to link them in where appropriate.

Preparing your sequences

Do all the quality filtering, trimming, etc. that you think you should do.

The khmer tools work “out of the box” on interleaved paired-end data.

All of our scripts will take in .fq or .fastq files as FASTQ, and all other files as FASTA. gzip files are always accepted.
Let us know if not; that’s a bug!

Genome assembly, including MDA samples and highly polymorphic genomes

1. Apply digital normalization as follows.

Broadly, normalize each insert library separately, in the following way:

For high-coverage libraries (> ~50x), do three-pass digital normalization: run normalize-by-median.py
with --cutoff=20 and then run filter-abund.py with --cutoff=1. Now split out the
remaining paired-end/interleaved and single-end reads using extract-paired-reads.py, and run
normalize-by-median.py on the paired-end and single-end files (using --unpaired-reads) with
--cutoff=5.

For low-coverage libraries (< 50x) do single-pass digital normalization: run normalize-by-median.py to
--cutoff=10.

2.6. The khmer user documentation 27

https://github.com/dib-lab/khmer/blob/stable/examples/stamps/do.sh
http://nbviewer.ipython.org/urls/raw.github.com/dib-lab/khmer/stable/examples/stamps%2520k-mer%2520distributions.ipynb
http://ged.msu.edu/angus/2013-hmp-assembly-webinar/exploring-stamps-data.html
http://ged.msu.edu/angus/2013-hmp-assembly-webinar/exploring-stamps-data.html
http://ivory.idyll.org/blog/an-assembly-handbook-for-khmer.html
http://ivory.idyll.org/blog/

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

2. Extract any remaining paired-end reads and lump remaining orphan reads into singletons using
extract-paired-reads.py

3. Then assemble as normal, with appropriate insert size specs etc. for the paired end reads.

You can read about this process in the digital normalization paper.

mRNAseq assembly

1. Apply single-pass digital normalization. Run normalize-by-median.py with --cutoff=20.

2. Extract any remaining paired-end reads and lump remaining orphan reads into singletons using
extract-paired-reads.py

3. Then assemble as normal, with appropriate insert size specs etc. for the paired end reads.

You can read about this process in the digital normalization paper.

Metagenome assembly

1. Apply single-pass digital normalization. Run normalize-by-median.py with --cutoff=20 (we’ve
also found --cutoff=10 works fine).

2. Run sandbox/filter-below-abund.py with --cutoff=50 (if you ran
normalize-by-median.py with --cutoff=10) or wiht --cutoff=100 if you ran
normalize-by-median.py with --cutoff=20)

3. Partition reads with load-graph.py, etc. etc.

4. Assemble groups as normal, extracting paired-end reads and lumping remaining orphan reads into singletons
using extract-paired-reads.py.

(We actually use Velvet at this point, but there should be no harm in using a metagenome assembler such as MetaVelvet
or MetaIDBA or SOAPdenovo.)

Read more about this in the partitioning paper. We have some upcoming papers on partitioning and metagenome
assembly, too; we’ll link those in when we can.

Metatranscriptome assembly

(Not tested by us!)

1. Apply single-pass digital normalization by running normalize-by-median.py with --cutoff=20.

2. Extract any remaining paired-end reads and lump remaining orphan reads into singletons using
extract-paired-reads.py.

3. Then assemble with a genome or metagenome assembler, not an mRNAseq assembler. Use appropriate insert
size specs etc. for the paired end reads.

Preprocessing Illumina for other applications

(Not tested by us!)

Others have told us that you can apply digital normalization to Illumina data prior to using Illumina for RNA scaffold-
ing or error correcting PacBio reads.

Our suggestion for this, based on no evidence whatsoever, is to run normalize-by-median.py with
--cutoff=20 on the Illumina data.

28 Chapter 2. Details

http://arxiv.org/abs/1203.4802
http://arxiv.org/abs/1203.4802
http://pnas.org/content/early/2012/07/25/1121464109.abstract
http://www.ncbi.nlm.nih.gov/pubmed?term=20980554
http://www.ncbi.nlm.nih.gov/pubmed?term=20980554
http://www.ncbi.nlm.nih.gov/pubmed?term=22750884

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Quantifying mRNAseq or metagenomes assembled with digital normalization

For now, khmer only deals with assembly! So: assemble. Then, go back to your original, unnormalized reads, and
map those to your assembly with e.g. bowtie. Then count as you normally would).

Philosophy of digital normalization

The basic philosophy of digital normalization is “load your most valuable reads first.” Diginorm gets rid of redundancy
iteratively, so you are more likely to retain the first reads fed in; this means you should load in paired end reads, or
longer reads, first.

Iterative and independent normalization

You can use --loadgraph and --savegraph to do iterative normalizations on multiple files in multiple steps.
For example, break

normalize-by-median.py [...] file1.fa file2.fa file3.fa

into multiple steps like so:

normalize-by-median.py [...] --savegraph file1.ct file1.fa
normalize-by-median.py [...] --loadgraph file1.ct --savegraph file2.ct file2.fa
normalize-by-median.py [...] --loadgraph file2.ct --savegraph file3.ct file3.fa

The results should be identical!

If you want to independently normalize multiple files for speed reasons, go ahead. Just remember to do a combined
normalization at the end. For example, instead of

normalize-by-median.py [...] file1.fa file2.fa file3.fa

you could do

normalize-by-median.py [...] file1.fa
normalize-by-median.py [...] file2.fa
normalize-by-median.py [...] file3.fa

and then do a final

normalize-by-median.py [...] file1.fa.keep file2.fa.keep file3.fa.keep

The results will not be identical, but should not differ significantly. The multipass approach will take more total time
but may end up being faster walltime because you can execute the independent normalizations on multiple computers.

For a cleverer approach that we will someday implement, read the Beachcomber’s Dilemma.

2.6.4 khmer’s command-line interface

The simplest way to use khmer’s functionality is through the command line scripts, located in the scripts/ directory of
the khmer distribution. Below is our documentation for these scripts. Note that all scripts can be given -h/--help
which will print out a list of arguments taken by that script.

Scripts that use k-mer counting tables or k-mer graphs take an -M parameter, which sets the maximum memory usage
in bytes. This should generally be set as high as possible; see Setting khmer memory usage for more information.

1. k-mer counting and abundance filtering

2. Partitioning

2.6. The khmer user documentation 29

http://ivory.idyll.org/blog/beachcombers-dilemma.html
https://github.com/dib-lab/khmer/tree/stable/scripts

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

3. Digital normalization

4. Read handling: interleaving, splitting, etc.

Note: Almost all scripts take in either FASTA and FASTQ format, and output the same.

Gzip and bzip2 compressed files are detected automatically.

k-mer counting and abundance filtering

load-into-counting.py

Build a k-mer countgraph from the given sequences.

usage: load-into-counting.py [-h] [–version] [–ksize KSIZE] [–n_tables N_TABLES] [-U UNIQUE_KMERS] [–fp-
rate FP_RATE] [–max-tablesize MAX_TABLESIZE | -M MAX_MEMORY_USAGE] [–threads THREADS] [-b]
[–summary-info FORMAT] [-f] output_countgraph_filename input_sequence_filename [input_sequence_filename ...]

output_countgraph_filename
The name of the file to write the k-mer countgraph to.

input_sequence_filename
The names of one or more FAST[AQ] input sequence files.

-h, --help
show this help message and exit

--version
show program’s version number and exit

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of tables to use in k-mer countgraph

-U <float>, --unique-kmers <float>
approximate number of unique kmers in the input set

--fp-rate <float>
Override the automatic FP rate setting for the current script

--max-tablesize <float>, -x <float>
upper bound on tablesize to use; overrides –max-memory-usage/-M.

-M <float>, --max-memory-usage <float>
maximum amount of memory to use for data structure.

--threads <int>, -T <int>
Number of simultaneous threads to execute

-b, --no-bigcount
The default behaviour is to count past 255 using bigcount. This flag turns bigcount off, limiting counts to 255.

--summary-info <format>, -s <format>
What format should the machine readable run summary be in? (json or tsv, disabled by default)

-f, --force
Overwrite output file if it exists

30 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Note: with -b/--no-bigcount the output will be the exact size of the k-mer countgraph and this script will use a
constant amount of memory. In exchange k-mer counts will stop at 255. The memory usage of this script with -b will
be about 1.15x the product of the -x and -N numbers.

Example:

load-into-counting.py -k 20 -x 5e7 out data/100k-filtered.fa

Multiple threads can be used to accelerate the process, if you have extra cores to spare.

Example:

load-into-counting.py -k 20 -x 5e7 -T 4 out data/100k-filtered.fa

abundance-dist.py

Calculate abundance distribution of the k-mers in the sequence file using a pre-made k-mer countgraph.

usage: abundance-dist.py [-h] [-z] [-s] [-b] [–version] [-f] input_count_graph_filename input_sequence_filename out-
put_histogram_filename

input_count_graph_filename
The name of the input k-mer countgraph file.

input_sequence_filename
The name of the input FAST[AQ] sequence file.

output_histogram_filename
The columns are: (1) k-mer abundance, (2) k-mer count, (3) cumulative count, (4) fraction of total distinct
k-mers.

-h, --help
show this help message and exit

-z, --no-zero
Do not output zero-count bins

-s, --squash
Overwrite existing output_histogram_filename

-b, --no-bigcount
Do not count k-mers past 255

--version
show program’s version number and exit

-f, --force
Continue even if specified input files do not exist or are empty.

Example:

load-into-countgraph.py -x 1e7 -N 2 -k 17 counts \
tests/test-data/test-abund-read-2.fa

abundance-dist.py counts tests/test-data/test-abund-read-2.fa test-dist

abundance-dist-single.py

Calculate the abundance distribution of k-mers from a single sequence file.

2.6. The khmer user documentation 31

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

usage: abundance-dist-single.py [-h] [–version] [–ksize KSIZE] [–n_tables N_TABLES] [-U UNIQUE_KMERS] [–
fp-rate FP_RATE] [–max-tablesize MAX_TABLESIZE | -M MAX_MEMORY_USAGE] [–threads THREADS] [-z]
[-b] [-s] [–savegraph filename] [-f] input_sequence_filename output_histogram_filename

input_sequence_filename
The name of the input FAST[AQ] sequence file.

output_histogram_filename
The name of the output histogram file. The columns are: (1) k-mer abundance, (2) k-mer count, (3) cumulative
count, (4) fraction of total distinct k-mers.

-h, --help
show this help message and exit

--version
show program’s version number and exit

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of tables to use in k-mer countgraph

-U <float>, --unique-kmers <float>
approximate number of unique kmers in the input set

--fp-rate <float>
Override the automatic FP rate setting for the current script

--max-tablesize <float>, -x <float>
upper bound on tablesize to use; overrides –max-memory-usage/-M.

-M <float>, --max-memory-usage <float>
maximum amount of memory to use for data structure.

--threads <int>, -T <int>
Number of simultaneous threads to execute

-z, --no-zero
Do not output zero-count bins

-b, --no-bigcount
Do not count k-mers past 255

-s, --squash
Overwrite output file if it exists

--savegraph <filename>
Save the k-mer countgraph to the specified filename.

-f, --force
Overwrite output file if it exists

Note that with -b/--no-bigcount this script is constant memory; in exchange, k-mer counts will stop at 255. The
memory usage of this script with -b will be about 1.15x the product of the -x and -N numbers.

To count k-mers in multiple files use load_into_counting.py and abundance_dist.py.

Example:

abundance-dist-single.py -x 1e7 -N 2 -k 17 \
tests/test-data/test-abund-read-2.fa test-dist

32 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

filter-abund.py

Trim sequences at a minimum k-mer abundance.

usage: filter-abund.py [-h] [–threads THREADS] [–cutoff CUTOFF] [–variable-coverage] [–normalize-to NOR-
MALIZE_TO] [-o optional_output_filename] [–version] [-f] [–gzip | –bzip] input_count_graph_filename in-
put_sequence_filename [input_sequence_filename ...]

input_count_graph_filename
The input k-mer countgraph filename

input_sequence_filename
Input FAST[AQ] sequence filename

-h, --help
show this help message and exit

--threads <int>, -T <int>
Number of simultaneous threads to execute

--cutoff <int>, -C <int>
Trim at k-mers below this abundance.

--variable-coverage, -V
Only trim low-abundance k-mers from sequences that have high coverage.

--normalize-to <int>, -Z <int>
Base the variable-coverage cutoff on this median k-mer abundance.

-o <optional_output_filename>, --output <optional_output_filename>
Output the trimmed sequences into a single file with the given filename instead of creating a new file for each
input file.

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exists

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

Trimmed sequences will be placed in ${input_sequence_filename}.abundfilt for each input sequence
file. If the input sequences are from RNAseq or metagenome sequencing then --variable-coverage should be
used.

Example:

load-into-counting.py -k 20 -x 5e7 countgraph data/100k-filtered.fa
filter-abund.py -C 2 countgraph data/100k-filtered.fa

filter-abund-single.py

Trims sequences at a minimum k-mer abundance (in memory version).

usage: filter-abund-single.py [-h] [–version] [–ksize KSIZE] [–n_tables N_TABLES] [-U UNIQUE_KMERS] [–fp-
rate FP_RATE] [–max-tablesize MAX_TABLESIZE | -M MAX_MEMORY_USAGE] [–threads THREADS] [–cutoff
CUTOFF] [–savegraph filename] [-f] [–gzip | –bzip] input_sequence_filename

2.6. The khmer user documentation 33

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

input_sequence_filename
FAST[AQ] sequence file to trim

-h, --help
show this help message and exit

--version
show program’s version number and exit

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of tables to use in k-mer countgraph

-U <float>, --unique-kmers <float>
approximate number of unique kmers in the input set

--fp-rate <float>
Override the automatic FP rate setting for the current script

--max-tablesize <float>, -x <float>
upper bound on tablesize to use; overrides –max-memory-usage/-M.

-M <float>, --max-memory-usage <float>
maximum amount of memory to use for data structure.

--threads <int>, -T <int>
Number of simultaneous threads to execute

--cutoff <int>, -C <int>
Trim at k-mers below this abundance.

--savegraph <filename>
If present, the name of the file to save the k-mer countgraph to

-f, --force
Overwrite output file if it exists

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

Trimmed sequences will be placed in ${input_sequence_filename}.abundfilt.

This script is constant memory.

To trim reads based on k-mer abundance across multiple files, use load-into-counting.py and
filter-abund.py.

Example:

filter-abund-single.py -k 20 -x 5e7 -C 2 data/100k-filtered.fa

trim-low-abund.py

Trim low-abundance k-mers using a streaming algorithm.

34 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

usage: trim-low-abund.py [-h] [–version] [–ksize KSIZE] [–n_tables N_TABLES] [-U UNIQUE_KMERS] [–fp-rate
FP_RATE] [–max-tablesize MAX_TABLESIZE | -M MAX_MEMORY_USAGE] [–cutoff CUTOFF] [–normalize-
to NORMALIZE_TO] [-o output_filename] [–variable-coverage] [-l filename] [-s filename] [–force] [–ignore-pairs]
[–tempdir TEMPDIR] [–gzip | –bzip] input_filenames [input_filenames ...]

input_filenames

-h, --help
show this help message and exit

--version
show program’s version number and exit

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of tables to use in k-mer countgraph

-U <float>, --unique-kmers <float>
approximate number of unique kmers in the input set

--fp-rate <float>
Override the automatic FP rate setting for the current script

--max-tablesize <float>, -x <float>
upper bound on tablesize to use; overrides –max-memory-usage/-M.

-M <float>, --max-memory-usage <float>
maximum amount of memory to use for data structure.

--cutoff <int>, -C <int>
remove k-mers below this abundance

--normalize-to <int>, -Z <int>
base cutoff on this median k-mer abundance

-o <output_filename>, --output <output_filename>
only output a single file with the specified filename; use a single dash “-” to specify that output should go to
STDOUT (the terminal)

--variable-coverage, -V
Only trim low-abundance k-mers from sequences that have high coverage.

-l <filename>, --loadgraph <filename>
load a precomputed k-mer graph from disk

-s <filename>, --savegraph <filename>
save the k-mer countgraph to disk after allreads are loaded.

--force

--ignore-pairs

--tempdir <str>, -T <str>

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

The output is one file for each input file, <input file>.abundtrim, placed in the current directory. This output
contains the input sequences trimmed at low-abundance k-mers.

2.6. The khmer user documentation 35

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

The -V /--variable-coverage parameter will, if specified, prevent elimination of low-abundance reads by only
trimming low-abundance k-mers from high-abundance reads; use this for non-genomic data sets that may have variable
coverage.

Note that the output reads will not necessarily be in the same order as the reads in the input files; if this is an important
consideration, use load-into-countgraph.py and filter-abund.py. However, read pairs will be kept
together, in “broken-paired” format; you can use extract-paired-reads.py to extract read pairs and orphans.

Example:

trim-low-abund.py -x 5e7 -k 20 -C 2 data/100k-filtered.fa

count-median.py

Count k-mers summary stats for sequences

usage: count-median.py [-h] [–version] [-f] input_count_graph_filename input_sequence_filename out-
put_summary_filename

input_count_graph_filename
input k-mer countgraph filename

input_sequence_filename
input FAST[AQ] sequence filename

output_summary_filename
output summary filename

-h, --help
show this help message and exit

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exists

Count the median/avg k-mer abundance for each sequence in the input file, based on the k-mer counts in the given
k-mer countgraph. Can be used to estimate expression levels (mRNAseq) or coverage (genomic/metagenomic).

The output file contains sequence id, median, average, stddev, and seq length, in comma-separated value (CSV) format.

Example:

load-into-countgraph.py counts tests/test-data/test-reads.fq.gz
count-median.py counts tests/test-data/test-reads.fq.gz medians.txt

NOTE: All ‘N’s in the input sequences are converted to ‘A’s.

unique-kmers.py

Estimate number of unique k-mers, with precision <= ERROR_RATE.

usage: unique-kmers.py [-h] [–version] [-q] [–ksize KSIZE] [–error-rate ERROR_RATE] [–report filename] [–stream-
records] [–diagnostics] input_sequence_filename [input_sequence_filename ...]

input_sequence_filename
Input FAST[AQ] sequence filename(s).

36 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

-h, --help
show this help message and exit

--version
show program’s version number and exit

-q, --quiet

--ksize <int>, -k <int>
k-mer size to use

--error-rate <float>, -e <float>
Acceptable error rate

--report <filename>, -R <filename>
generate informational report and write to filename

--stream-records, -S
write input sequences to STDOUT

--diagnostics
print out recommended tablesize arguments and restrictions

A HyperLogLog counter is used to do cardinality estimation. Since this counter is based on a tradeoff between
precision and memory consumption, the -e/--error-rate can be used to control how much memory will be used.
In practice the memory footprint is small even at low error rates (< 0.01).

-k/--ksize should be set to the desired k-mer size.

Informational output is sent to STDERR, but a report file can be generated with -R/--report.

--stream-records will write the sequences taken in to STDOUT. This is useful for workflows: count unique
kmers in a stream, then do digital normalization.

--diagnostics will provide detailed options for tablesize and memory limitations for various false positive rates.
This is useful for configuring other khmer scripts. This will be written to STDERR.

Example:

unique-kmers.py -k 17 tests/test-data/test-abund-read{,-2,-3}.fa

Example:

unique-kmers.py -k 17 --diagnostics tests/test-data/test-abund-read.fa

Example:

unique-kmers.py --stream-records -k 17 tests/test-data/test-reads.fa | \
normalize-by-median.py -k 17 -o normalized /dev/stdin

Example:

unique-kmers.py -R unique_count -k 30 \
tests/test-data/test-abund-read-paired.fa

Partitioning

do-partition.py

Load, partition, and annotate FAST[AQ] sequences

2.6. The khmer user documentation 37

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

usage: do-partition.py [-h] [–version] [–ksize KSIZE] [–n_tables N_TABLES] [-U UNIQUE_KMERS] [–fp-
rate FP_RATE] [–max-tablesize MAX_TABLESIZE | -M MAX_MEMORY_USAGE] [–threads THREADS]
[–subset-size SUBSET_SIZE] [–no-big-traverse] [–keep-subsets] [-f] graphbase input_sequence_filename [in-
put_sequence_filename ...]

graphbase
base name for output files

input_sequence_filename
input FAST[AQ] sequence filenames

-h, --help
show this help message and exit

--version
show program’s version number and exit

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of tables to use in k-mer countgraph

-U <float>, --unique-kmers <float>
approximate number of unique kmers in the input set

--fp-rate <float>
Override the automatic FP rate setting for the current script

--max-tablesize <float>, -x <float>
upper bound on tablesize to use; overrides –max-memory-usage/-M.

-M <float>, --max-memory-usage <float>
maximum amount of memory to use for data structure.

--threads <int>, -T <int>
Number of simultaneous threads to execute

--subset-size <float>, -s <float>
Set subset size (usually 1e5-1e6 is good)

--no-big-traverse
Truncate graph joins at big traversals

--keep-subsets
Keep individual subsets (default: False)

-f, --force
Overwrite output file if it exists

Load in a set of sequences, partition them, merge the partitions, and annotate the original sequences files with the
partition information.

This script combines the functionality of load-graph.py, partition-graph.py,
merge-partitions.py, and annotate-partitions.py into one script. This is convenient but should
probably not be used for large data sets, because do-partition.py doesn’t provide save/resume functionality.

Example:

do-partition.py -k 20 example tests/test-data/random-20-a.fa

38 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

load-graph.py

Load sequences into the compressible graph format plus optional tagset.

usage: load-graph.py [-h] [–version] [–ksize KSIZE] [–n_tables N_TABLES] [-U UNIQUE_KMERS] [–fp-rate
FP_RATE] [–max-tablesize MAX_TABLESIZE | -M MAX_MEMORY_USAGE] [–threads THREADS] [–no-build-
tagset] [-f] output_nodegraph_filename input_sequence_filename [input_sequence_filename ...]

output_nodegraph_filename
output k-mer nodegraph filename.

input_sequence_filename
input FAST[AQ] sequence filename

-h, --help
show this help message and exit

--version
show program’s version number and exit

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of tables to use in k-mer countgraph

-U <float>, --unique-kmers <float>
approximate number of unique kmers in the input set

--fp-rate <float>
Override the automatic FP rate setting for the current script

--max-tablesize <float>, -x <float>
upper bound on tablesize to use; overrides –max-memory-usage/-M.

-M <float>, --max-memory-usage <float>
maximum amount of memory to use for data structure.

--threads <int>, -T <int>
Number of simultaneous threads to execute

--no-build-tagset, -n
Do NOT construct tagset while loading sequences

-f, --force
Overwrite output file if it exists

See extract-partitions.py for a complete workflow.

partition-graph.py

Partition a sequence graph based upon waypoint connectivity

usage: partition-graph.py [-h] [–stoptags filename] [–subset-size SUBSET_SIZE] [–no-big-traverse] [–version] [-f]
[–threads THREADS] basename

basename
basename of the input k-mernodegraph + tagset files

-h, --help
show this help message and exit

2.6. The khmer user documentation 39

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

--stoptags <filename>, -S <filename>
Use stoptags in this file during partitioning

--subset-size <float>, -s <float>
Set subset size (usually 1e5-1e6 is good)

--no-big-traverse
Truncate graph joins at big traversals

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exists

--threads <int>, -T <int>
Number of simultaneous threads to execute

The resulting partition maps are saved as ${basename}.subset.#.pmap files.

See ‘Artifact removal’ to understand the stoptags argument.

merge-partition.py

Merge partition map ‘.pmap’ files.

usage: merge-partition.py [-h] [–ksize KSIZE] [–keep-subsets] [–version] [-f] graphbase

graphbase
basename for input and output files

-h, --help
show this help message and exit

--ksize <int>, -k <int>
k-mer size (default: 32)

--keep-subsets
Keep individual subsets (default: False)

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exists

Take the ${graphbase}.subset.#.pmap files and merge them all into a single
${graphbase}.pmap.merged file for annotate-partitions.py to use.

annotate-partitions.py

Annotate sequences with partition IDs.

usage: annotate-partitions.py [-h] [–ksize KSIZE] [–version] [-f] graphbase input_sequence_filename [in-
put_sequence_filename ...]

graphbase
basename for input and output files

input_sequence_filename
input FAST[AQ] sequences to annotate.

40 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

-h, --help
show this help message and exit

--ksize <int>, -k <int>
k-mer size (default: 32)

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exists

Load in a partitionmap (generally produced by partition-graph.py or merge-partitions.py) and anno-
tate the sequences in the given files with their partition IDs. Use extract-partitions.py to extract sequences
into separate group files.

Example (results will be in random-20-a.fa.part):

load-graph.py -k 20 example tests/test-data/random-20-a.fa
partition-graph.py example
merge-partitions.py -k 20 example
annotate-partitions.py -k 20 example tests/test-data/random-20-a.fa

extract-partitions.py

Separate sequences that are annotated with partitions into grouped files.

usage: extract-partitions.py [-h] [–max-size MAX_SIZE] [–min-partition-size MIN_PART_SIZE] [–no-output-
groups] [–output-unassigned] [–version] [-f] [–gzip | –bzip] output_filename_prefix input_partition_filename [in-
put_partition_filename ...]

output_filename_prefix

input_partition_filename

-h, --help
show this help message and exit

--max-size <int>, -X <int>
Max group size (n sequences)

--min-partition-size <int>, -m <int>
Minimum partition size worth keeping

--no-output-groups, -n
Do not actually output groups files.

--output-unassigned, -U
Output unassigned sequences, too

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exists

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

2.6. The khmer user documentation 41

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Example (results will be in example.group0000.fa):

load-graph.py -k 20 example tests/test-data/random-20-a.fa
partition-graph.py example
merge-partitions.py -k 20 example
annotate-partitions.py -k 20 example tests/test-data/random-20-a.fa
extract-partitions.py example random-20-a.fa.part

(extract-partitions.py will produce a partition size distribution in <base>.dist. The columns are: (1) number
of reads, (2) count of partitions with n reads, (3) cumulative sum of partitions, (4) cumulative sum of reads.)

Artifact removal

The following scripts are specialized scripts for finding and removing highly-connected k-mers (HCKs). See Parti-
tioning large data sets (50m+ reads).

make-initial-stoptags.py Find an initial set of highly connected k-mers.

usage: make-initial-stoptags.py [-h] [–version] [–ksize KSIZE] [–n_tables N_TABLES] [-U UNIQUE_KMERS] [–fp-
rate FP_RATE] [–max-tablesize MAX_TABLESIZE | -M MAX_MEMORY_USAGE] [–subset-size SUBSET_SIZE]
[–stoptags filename] [-f] graphbase

graphbase
basename for input and output filenames

-h, --help
show this help message and exit

--version
show program’s version number and exit

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of tables to use in k-mer countgraph

-U <float>, --unique-kmers <float>
approximate number of unique kmers in the input set

--fp-rate <float>
Override the automatic FP rate setting for the current script

--max-tablesize <float>, -x <float>
upper bound on tablesize to use; overrides –max-memory-usage/-M.

-M <float>, --max-memory-usage <float>
maximum amount of memory to use for data structure.

--subset-size <float>, -s <float>
Set subset size (default 1e4 is prob ok)

--stoptags <filename>, -S <filename>
Use stoptags in this file during partitioning

-f, --force
Overwrite output file if it exists

Loads a k-mer nodegraph/tagset pair created by load-graph.py, and does a small set of traversals from graph way-
points; on these traversals, looks for k-mers that are repeatedly traversed in high-density regions of the graph, i.e. are

42 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

highly connected. Outputs those k-mers as an initial set of stoptags, which can be fed into partition-graph.py,
find-knots.py, and filter-stoptags.py.

The k-mer countgraph size options parameters are for a k-mer countgraph to keep track of repeatedly-traversed k-mers.
The subset size option specifies the number of waypoints from which to traverse; for highly connected data sets, the
default (1000) is probably ok.

find-knots.py Find all highly connected k-mers.

usage: find-knots.py [-h] [–version] [–ksize KSIZE] [–n_tables N_TABLES] [-U UNIQUE_KMERS] [–fp-rate
FP_RATE] [–max-tablesize MAX_TABLESIZE | -M MAX_MEMORY_USAGE] [-f] graphbase

graphbase
Basename for the input and output files.

-h, --help
show this help message and exit

--version
show program’s version number and exit

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of tables to use in k-mer countgraph

-U <float>, --unique-kmers <float>
approximate number of unique kmers in the input set

--fp-rate <float>
Override the automatic FP rate setting for the current script

--max-tablesize <float>, -x <float>
upper bound on tablesize to use; overrides –max-memory-usage/-M.

-M <float>, --max-memory-usage <float>
maximum amount of memory to use for data structure.

-f, --force
Continue past warnings

Load an k-mer nodegraph/tagset pair created by load-graph.py, and a set of pmap files created by
partition-graph.py. Go through each pmap file, select the largest partition in each, and do the same kind
of traversal as in make-initial-stoptags.py from each of the waypoints in that partition; this should identify
all of the Highly Connected Kmers in that partition. These HCKs are output to <graphbase>.stoptags after
each pmap file.

Parameter choice is reasonably important. See the pipeline in Partitioning large data sets (50m+ reads) for an example
run.

This script is not very scalable and may blow up memory and die horribly. You should be able to use the intermediate
stoptags to restart the process, and if you eliminate the already-processed pmap files, you can continue where you left
off.

filter-stoptags.py Trim sequences at stoptags.

usage: filter-stoptags.py [-h] [–ksize KSIZE] [–version] [-f] input_stoptags_filename input_sequence_filename [in-
put_sequence_filename ...]

input_stoptags_filename

2.6. The khmer user documentation 43

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

input_sequence_filename

-h, --help
show this help message and exit

--ksize <int>, -k <int>
k-mer size

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exists

Load stoptags in from the given .stoptags file and use them to trim or remove the sequences in <file1-N>. Trimmed
sequences will be placed in <fileN>.stopfilt.

Digital normalization

normalize-by-median.py

Do digital normalization (remove mostly redundant sequences)

usage: normalize-by-median.py [-h] [–version] [–ksize KSIZE] [–n_tables N_TABLES] [-U UNIQUE_KMERS] [–
fp-rate FP_RATE] [–max-tablesize MAX_TABLESIZE | -M MAX_MEMORY_USAGE] [-q] [-C CUTOFF] [-p] [–
force_single] [-u unpaired_reads_filename] [-s filename] [-R report_filename] [–report-frequency report_frequency]
[-f] [-o filename] [-l filename] [–gzip | –bzip] input_sequence_filename [input_sequence_filename ...]

input_sequence_filename
Input FAST[AQ] sequence filename.

-h, --help
show this help message and exit

--version
show program’s version number and exit

--ksize <int>, -k <int>
k-mer size to use

--n_tables <int>, -N <int>
number of tables to use in k-mer countgraph

-U <float>, --unique-kmers <float>
approximate number of unique kmers in the input set

--fp-rate <float>
Override the automatic FP rate setting for the current script

--max-tablesize <float>, -x <float>
upper bound on tablesize to use; overrides –max-memory-usage/-M.

-M <float>, --max-memory-usage <float>
maximum amount of memory to use for data structure.

-q, --quiet

-C <int>, --cutoff <int>
when the median k-mer coverage level above is above this numer the read is not kept.

-p, --paired
require that all sequences be properly paired

44 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

--force_single
treat all sequences as single-ended/unpaired

-u <unpaired_reads_filename>, --unpaired-reads <unpaired_reads_filename>
include a file of unpaired reads to which -p/–paired does not apply.

-s <filename>, --savegraph <filename>
save the k-mer countgraph to disk after all reads are loaded.

-R <report_filename>, --report <report_filename>

--report-frequency <report_frequency>

-f, --force
continue past file reading errors

-o <filename>, --output <filename>
only output a single file with the specified filename; use a single dash “-” to specify that output should go to
STDOUT (the terminal)

-l <filename>, --loadgraph <filename>
load a precomputed k-mer graph from disk

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

Discard sequences based on whether or not their median k-mer abundance lies above a specified cutoff. Kept sequences
will be placed in <fileN>.keep.

By default, paired end reads will be considered together; if either read should be kept, both will be kept. (This keeps
both reads from a fragment, and helps with retention of repeats.) Unpaired reads are treated individually.

If -p/--paired is set, then proper pairing is required and the script will exit on unpaired reads, although
--unpaired-reads can be used to supply a file of orphan reads to be read after the paired reads.

--force_single will ignore all pairing information and treat reads individually.

With -s/--savegraph, the k-mer countgraph will be saved to the specified file after all sequences have been
processed. -l/--loadgraph will load the specified k-mer countgraph before processing the specified files. Note
that these graphs are are in the same format as those produced by load-into-counting.py and consumed by
abundance-dist.py.

To append reads to an output file (rather than overwriting it), send output to STDOUT with –output - and use UNIX
file redirection syntax (>>) to append to the file.

Example:

normalize-by-median.py -k 17 tests/test-data/test-abund-read-2.fa

Example:

normalize-by-median.py -p -k 17 \
tests/test-data/test-abund-read-paired.fa

Example:

normalize-by-median.py -p -k 17 -o - tests/test-data/paired.fq \
>> appended-output.fq

Example:

2.6. The khmer user documentation 45

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

normalize-by-median.py -k 17 -f tests/test-data/test-error-reads.fq \
tests/test-data/test-fastq-reads.fq

Example:

normalize-by-median.py -k 17 -s test.ct \
tests/test-data/test-abund-read-2.fa \
tests/test-data/test-fastq-reads.fq

Read handling: interleaving, splitting, etc.

extract-long-sequences.py

Extract FASTQ or FASTA sequences longer than specified length (default: 200 bp).

usage: extract-long-sequences.py [-h] [-o output] [-l LENGTH] [–version] [–gzip | –bzip] input_filenames [in-
put_filenames ...]

input_filenames
Input FAST[AQ] sequence filename.

-h, --help
show this help message and exit

-o <output>, --output <output>
The name of the output sequence file.

-l <int>, --length <int>
The minimum length of the sequence file.

--version
show program’s version number and exit

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

Example:

extract-long-sequences.py --length 10 tests/test-data/paired-mixed.fa

extract-paired-reads.py

Take a mixture of reads and split into pairs and orphans.

usage: extract-paired-reads.py [-h] [–version] [-d OUTPUT_DIR] [–output-paired filename] [–output-single filename]
[-f] [–gzip | –bzip] [infile]

infile

-h, --help
show this help message and exit

--version
show program’s version number and exit

46 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

-d, --output-dir
Output split reads to specified directory. Creates directory if necessary

--output-paired <filename>, -p <filename>
Output paired reads to this file

--output-single <filename>, -s <filename>
Output orphaned reads to this file

-f, --force
Overwrite output file if it exists

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

Many read-handling programs (assemblers, mappers, etc.) require that you give them either perfectly interleaved files,
or files containing only single reads. This script takes files that were originally interleaved but where reads may have
been orphaned (via error filtering, application of abundance filtering, digital normalization in non-paired mode, or
partitioning) and separates the interleaved reads from the orphaned reads.

The default output is two files, <input file>.pe and <input file>.se, placed in the current directory. The .pe file contains
interleaved and properly paired sequences, while the .se file contains orphan sequences.

The directory into which the interleaved and orphaned reads are output may be specified using -d/--output-dir.
This directory will be created if it does not already exist.

Alternatively, you can specify the filenames directly with -p/--output-paired and -s/--output-single,
which will override the -d/--output-dir option.

Example:

extract-paired-reads.py tests/test-data/paired.fq

fastq-to-fasta.py

Converts FASTQ format (.fq) files to FASTA format (.fa).

usage: fastq-to-fasta.py [-h] [-o filename] [-n] [–version] [–gzip | –bzip] input_sequence

input_sequence
The name of the input FASTQ sequence file.

-h, --help
show this help message and exit

-o <filename>, --output <filename>
The name of the output FASTA sequence file.

-n, --n_keep
Option to keep reads containing ‘N’s in input_sequence file. Default is to drop reads

--version
show program’s version number and exit

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

2.6. The khmer user documentation 47

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

interleave-reads.py

Produce interleaved files from R1/R2 paired files

usage: interleave-reads.py [-h] [-o filename] [–version] [-f] [–gzip | –bzip] left right

left

right

-h, --help
show this help message and exit

-o <filename>, --output <filename>

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exists

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

The output is an interleaved set of reads, with each read in <R1> paired with a read in <R2>. By default, the output
goes to stdout unless -o/--output is specified.

As a “bonus”, this file ensures that if read names are not already formatted properly, they are reformatted consistently,
such that they look like the pre-1.8 Casava format (@name/1, @name/2).

Example:

interleave-reads.py tests/test-data/paired.fq.1 \
tests/test-data/paired.fq.2 -o paired.fq

readstats.py

Display summary statistics for one or more FASTA/FASTQ files.

usage: readstats.py [-h] [-o filename] [–csv] [–version] filenames [filenames ...]

filenames

-h, --help
show this help message and exit

-o <filename>, --output <filename>
output file for statistics; defaults to stdout.

--csv
Use the CSV format for the statistics, including column headers.

--version
show program’s version number and exit

Report number of bases, number of sequences, and average sequence length for one or more FASTA/FASTQ files; and
report aggregate statistics at end.

With -o/--output, the output will be saved to the specified file.

48 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Example:

readstats.py tests/test-data/test-abund-read-2.fa

sample-reads-randomly.py

Uniformly subsample sequences from a collection of files

usage: sample-reads-randomly.py [-h] [-N NUM_READS] [-M MAX_READS] [-S NUM_SAMPLES] [-R RAN-
DOM_SEED] [–force_single] [-o filename] [–version] [-f] [–gzip | –bzip] filenames [filenames ...]

filenames

-h, --help
show this help message and exit

-N <int>, --num_reads <int>

-M <int>, --max_reads <int>

-S <int>, --samples <int>

-R <int>, --random-seed <int>
Provide a random seed for the generator

--force_single
Ignore read pair information if present

-o <filename>, --output <filename>

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exits

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

Take a list of files containing sequences, and subsample 100,000 sequences (-N /--num_reads) uniformly, using
reservoir sampling. Stop after first 100m sequences (-M /--max_reads). By default take one subsample, but take
-S/--samples samples if specified.

The output is placed in -o/--output <file> (for a single sample) or in <file>.subset.0 to
<file>.subset.S-1 (for more than one sample).

This script uses the reservoir sampling algorithm.

split-paired-reads.py

Split interleaved reads into two files, left and right.

usage: split-paired-reads.py [-h] [-d output_directory] [-0 output_orphaned] [-1 output_first] [-2 output_second] [–
version] [-f] [–gzip | –bzip] [infile]

infile

-h, --help
show this help message and exit

2.6. The khmer user documentation 49

http://en.wikipedia.org/wiki/Reservoir_sampling

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

-d <output_directory>, --output-dir <output_directory>
Output split reads to specified directory. Creates directory if necessary

-0 <output_orphaned>, --output-orphaned <output_orphaned>
Allow “orphaned” reads and extract them to this file

-1 <output_first>, --output-first <output_first>
Output “left” reads to this file

-2 <output_second>, --output-second <output_second>
Output “right” reads to this file

--version
show program’s version number and exit

-f, --force
Overwrite output file if it exists

--gzip
Compress output using gzip

--bzip
Compress output using bzip2

Some programs want paired-end read input in the One True Format, which is interleaved; other programs want input
in the Insanely Bad Format, with left- and right- reads separated. This reformats the former to the latter.

The directory into which the left- and right- reads are output may be specified using -d/--output-dir. This
directory will be created if it does not already exist.

Alternatively, you can specify the filenames directly with -1/--output-first and -2/--output-second,
which will override the -d/--output-dir setting on a file-specific basis.

-0/:option:’–output-orphans‘ will allow broken-paired format, and orphaned reads will be saved separately, to the
specified file.

Example:

split-paired-reads.py tests/test-data/paired.fq

Example:

split-paired-reads.py -0 reads-output-file tests/test-data/paired.fq

Example:

split-paired-reads.py -1 reads.1 -2 reads.2 tests/test-data/paired.fq

2.6.5 Blog posts and additional documentation

Hashtable and filtering

The basic inexact-matching approach used by the hashtable code is described in this blog post:

http://ivory.idyll.org/blog/jul-10/kmer-filtering

A test data set (soil metagenomics, 88m reads, 10gb) is here:

http://ci.oxli.org/userContent/88m-reads.fa.gz

50 Chapter 2. Details

http://ivory.idyll.org/blog/jul-10/kmer-filtering
http://ci.oxli.org/userContent/88m-reads.fa.gz

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Illumina read abundance profiles

khmer can be used to look at systematic variations in k-mer statistics across Illumina reads; see, for example, this blog
post:

http://ivory.idyll.org/blog/jul-10/illumina-read-phenomenology

The fasta-to-abundance-hist and abundance-hist-by-position scripts can be used to generate the k-mer abundance pro-
file data, after loading all the k-mer counts into a .ct file:

first, load all the k-mer counts:
load-into-counting.py -k 20 -x 1e7 25k.ct data/25k.fq.gz

then, build the '.freq' file that contains all of the counts by position
python sandbox/fasta-to-abundance-hist.py 25k.ct data/25k.fq.gz

sum across positions.
python sandbox/abundance-hist-by-position.py data/25k.fq.gz.freq > out.dist

The hashtable method ‘dump_kmers_by_abundance’ can be used to dump high abundance k-mers, but we don’t have
a script handy to do that yet.

You can assess high/low abundance k-mer distributions with the hi-lo-abundance-by-position script:

load-into-counting.py -k 20 25k.ct data/25k.fq.gz
python sandbox/hi-lo-abundance-by-position.py 25k.ct data/25k.fq.gz

This will produce two output files, <filename>.pos.abund=1 and <filename>.pos.abund=255.

2.6.6 Setting khmer memory usage

If you look at the documentation for the scripts (khmer’s command-line interface) you’ll see a -M parameter that sets
the maximum memory usage for any script that uses k-mer counting tables or k-mer graphs. What is this?

khmer uses a special data structure that lets it store counting tables and k-mer graphs in very low memory; the trick is
that you must fix the amount of memory khmer can use before running it. (See Pell et al., 2012 and Zhang et al., 2014
for the details.) This is what the -M parameter does.

If you set it too low, khmer will warn you to set it higher at the end. See below for some good choices for various
kinds of data.

Note for khmer 1.x users: As of khmer 2.0, the -M parameter sets the -N /--n_tables and -x
/--max-tablesize parameters automatically. You can still set these parameters directly if you wish.

The really short version

There is no way (except for experience, rules of thumb, and intuition) to know what this parameter should be up front.
So, use the maximum available memory:

-M 16e9

for a machine with 16 GB of free memory, for example.

The short version

This parameter specifies the maximum memory usage of the primary data structure in khmer, which is basically N
big hash tables of size x. The product of the number of hash tables and the size of the hash tables specifies the total
amount of memory used, which is what the -M parameter sets.

2.6. The khmer user documentation 51

http://ivory.idyll.org/blog/jul-10/illumina-read-phenomenology
http://github.com/ctb/khmer/blob/master/sandbox/fasta-to-abundance-hist.py
http://github.com/ctb/khmer/blob/master/sandbox/abundance-hist-by-position.py
http://github.com/ctb/khmer/blob/master/sandbox/hi-lo-abundance-by-position.py
http://www.ncbi.nlm.nih.gov/pubmed/22847406
http://www.ncbi.nlm.nih.gov/pubmed/25062443

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

These tables are used to track k-mers. If they are too small, khmer will fail in various ways (and will complain), but
there is no harm in making it too large. So, the absolute safest thing to do is to specify as much memory as is
available. Most scripts will inform you of the total memory usage, and (at the end) will complain if it’s too small.

Life is a bit more complicated than this, however, because some scripts – load-into-counting.py and
load-graph.py – keep ancillary information that will consume memory beyond this table data structure. So if
you run out of memory, decrease the table size.

Also see the rules of thumb, below.

The long version

khmer’s scripts, at their heart, represents k-mers in a very memory efficient way by taking advantage of two data
structures, Bloom filters and Count-Min Sketches, that are both probabilistic and constant memory. The “probabilistic”
part means that there are false positives: the less memory you use, the more likely it is that khmer will think that k-mers
are present when they are not, in fact, present.

Digital normalization (normalize-by-median.py and filter-abund.py) uses the Count-Min Sketch data
structure.

Graph partitioning (load-graph.py etc.) uses the Bloom filter data structure.

The practical ramifications of this are pretty cool. For example, your digital normalization is guaranteed not to increase
in memory utilization, and graph partitioning is estimated to be 10-20x more memory efficient than any other de Bruijn
graph representation. And hash tables (which is what Bloom filters and Count-Min Sketches use) are really fast and
efficient. Moreover, the optimal memory size for these primary data structures is dependent on the number of k-mers,
but not explicitly on the size of k itself, which is very unusual.

In exchange for this memory efficiency, however, you gain a certain type of parameter complexity. Unlike your more
typical k-mer package (like the Velvet assembler, or Jellyfish or Meryl or Tallymer), you are either guaranteed not to
run out of memory (for digital normalization) or much less likely to do so (for partitioning).

The biggest problem with khmer is that there is a minimum hash number and size that you need to specify for a given
number of k-mers, and you cannot confidently predict what it is before actually loading in the data. This, by the way,
is also true for de Bruijn graph assemblers and all the other k-mer-based software – the final memory usage depends
on the total number of k-mers, which in turn depends on the true size of your underlying genomic variation (e.g.
genome or transcriptome size), the number of errors, and the k-mer size you choose (the k parameter) [see Conway
& Bromage, 2011]. The number of reads or the size of your data set is only somewhat correlated with the total
number of k-mers. Trimming protocols, sequencing depth, and polymorphism rates are all important factors that
affect k-mer count.

The bad news is that we don’t have good ways to estimate total k-mer count a priori, although we can give you some
rules of thumb, below. In fact, counting the total number of distinct k-mers is a somewhat annoying challenge. Frankly,
we recommend just guessing instead of trying to be all scientific about it.

The good news is that you can never give khmer too much memory! k-mer counting and set membership simply gets
more and more accurate as you feed it more memory. (Although there may be performance hits from memory I/O,
e.g. see the NUMA architecture.) The other good news is that khmer can measure the false positive rate and detect
dangerously low memory conditions. For partitioning, we actually know what a too-high false positive rate is – our
k-mer percolation paper lays out the math. For digital normalization, we assume that a false positive rate of 10% is
bad. In both cases the data-loading scripts will exit with an error-code.

Rules of thumb

For digital normalization, we recommend:

• -M 8e9 for any amount of sequencing for a single microbial genome, MDA-amplified or single colony.

52 Chapter 2. Details

http://en.wikipedia.org/wiki/Bloom_filter
http://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
http://www.ncbi.nlm.nih.gov/pubmed?term=21245053
http://www.ncbi.nlm.nih.gov/pubmed?term=21245053
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://arxiv.org/abs/1112.4193

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

• -M 16e9 for up to a billion mRNAseq reads from any organism. Past that, increase it.

• -M 32e9 for most eukaryotic genome samples.

• -M 32e9 will also handle most “simple” metagenomic samples (HMP on down)

• For metagenomic samples that are more complex, such as soil or marine, start as high as possible. For example,
we are using -M 256e9 for ~300 Gbp of soil reads.

For partitioning of complex metagenome samples, we recommend starting as high as you can – something like half
your system memory. So if you have 256 GB of RAM, use -M 128e9 which will use 128 GB of RAM for the basic
graph storage, leaving other memory for the ancillary data structures.

2.6.7 Partitioning large data sets (50m+ reads)

“Partitioning” is what khmer calls the process of separating reads that do not connect to each other into different
logical bins. The goal of partitioning is to apply divide & conquer to the process of metagenomic assembly.

Basic partitioning

The basic workflow for partitioning is in the figure below:

Briefly, you load everything into khmer’s probabilistic graph representation; exhaustively explore the graph to find
all disconnected sequences; merge the results of the (parallelized) graph exploration; annotate sequences with their
partition; and then extract the different partitions into files grouped by partition size. These groups can then be
assembled individually.

Artifact removal

As part of our partitioning research, we discovered that large Illumina data sets tend to contain a single large, connected
component. This connected component seems to stem from sequencing artifacts that causes knots in the assembly
graph. We have developed tools to forcibly remove the knot at the heart of the graph.

Here’s the workflow:

2.6. The khmer user documentation 53

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Running on an example data set

Here is a set of commands for running both basic partitioning and artifact removal on a small soil metagenomics data
set that we’ve made available for this purpose.

The data set is about 1.1G and you can download it from here:

https://s3.amazonaws.com/public.ged.msu.edu/khmer/iowa-corn-50m.fa.gz

cd /path/to/data

the next command will create a '50m.ct' and a '50m.tagset',
representing the de Bruijn graph
load-graph.py -k 32 -N 4 -x 16e9 50m iowa-corn-50m.fa.gz

this will then partition that graph. should take a while.
update threads to something higher if you have more cores.
this creates a bunch of files, 50m.subset.*.pmap
partition-graph.py --threads 4 -s 1e5 50m

now, merge the pmap files into one big pmap file, 50m.pmap.merged
merge-partitions.py 50m

next, annotate the original sequences with their partition numbers.
this will create iowa-corn-50m.fa.gz.part
annotate-partitions.py 50m iowa-corn-50m.fa.gz

now, extract the partitions in groups into 'iowa-corn-50m.groupNNNN.fa'
extract-partitions.py iowa-corn-50m iowa-corn-50m.fa.gz.part

at this point, you can assemble the group files individually. Note,
however, that the last one them is quite big? this is because it's
the lump! yay!

if you want to break up the lump, go through the partitioning bit
on the group file, but this time with a twist:
mv iowa-corn-50m.group0005.fa corn-50m.lump.fa

create graph,
load-graph.py -x 8e9 lump corn-50m.lump.fa

create an initial set of stoptags to help in knot-traversal; otherwise,

54 Chapter 2. Details

https://s3.amazonaws.com/public.ged.msu.edu/khmer/iowa-corn-50m.fa.gz

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

partitioning and knot-traversal (which is systematic) is really expensive.
make-initial-stoptags.py lump

now partition the graph, using the stoptags file
partition-graph.py --stoptags lump.stoptags lump

use the partitioned subsets to find the k-mers that nucleate the lump
find-knots.py -x 2e8 -N 4 lump

remove those k-mers from the fasta files
filter-stoptags.py *.stoptags corn-50m.lump.fa

now, reload the filtered data set in and partition again.
NOTE: 'load-graph.py' uses the file extension to determine
if the file is formatted as FASTA or FASTQ. The default is
fasta, therefore if your files are fastq formatted you need
to append 'fastq' to the name so that 'load-graph.py'
will parse the file correctly
load-graph.py -x 8e9 lumpfilt corn-50m.lump.fa.stopfilt
partition-graph.py -T 4 lumpfilt
merge-partitions.py lumpfilt
annotate-partitions.py lumpfilt corn-50m.lump.fa.stopfilt
extract-partitions.py corn-50m-lump corn-50m.lump.fa.stopfilt.part

and voila, after all that, you should now have your de-knotted lump in
corn-50m-lump.group*.fa. The *.group????.fa files can now be
assembled individually by your favorite assembler.

Post-partitioning assembly

The ‘extract-partitions’ script takes reads belonging to each partition and aggregates them into ‘group’ files; each
group file contains at least one entire partition (and generally a lot more). Note, you can control the number of reads
in each file (equiv, the size of these files) with some of the arguments that ‘extract-partitions’ takes.

Now that you have these files... what do you do with them? The short answer is: assemble them! Each of these group
files contains reads that do not connect to reads in other files, so the files can be assembled individually (which is the
whole point of partitioning).

If you’re using Velvet, checkout the sandbox/velvet-assemble.sh script, which you can run like this:

bash /path/to/khmer/sandbox/velvet-assemble.sh <groupfile> <k>

This script does three things:

• first, it breaks the reads up into paired reads and single reads, and puts them in separate files (.pe and .se);

• second, it strips off the partition information from the reads, which confuses Velvet;

• and third, it runs velveth and velvetg to actually assemble.

You can implement your own approach, of course, but this is an example of what we do ourselves.

2.6.8 Known Issues

load-graph.py in multithreaded mode will find slightly different number of unique kmers. This is being investi-
gated in https://github.com/dib-lab/khmer/issues/1248

2.6. The khmer user documentation 55

https://github.com/dib-lab/khmer/issues/1248

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

2.6.9 Deploying the khmer project tools on Galaxy

This document is for people interested in deploying the khmer tools on the Galaxy platform.

We are developing the support for running all the khmer scripts in Galaxy.

Install the tools & tool description

In the administrative interface select “Search and browse tool sheds” under the heading “Tool sheds”. Click on “Galaxy
test tool shed” and search for khmer. Click on the “khmer” button and choose “Preview and install”. Click the “Install
to Galaxy” button at the top. At the bottom of the next page click the “Install” button.

Single Output Usage

For one or more files into a single file:

1. Choose ‘Normalize By Median’ from the ‘khmer protocols’ section of the ‘Tools’ menu.

2. Compatible files already uploaded to your Galaxy instance should be listed. If not then you may need to set
their datatype manually.

3. After selecting the input files specify if they are paired-interleaved or not.

4. Specify the sample type or show the advanced parameters to set the tablesize yourself. Consult Setting khmer
memory usage for assistance.

2.6.10 Papers using khmer

khmer was first published in Scaling metagenome sequence assembly with probabilistic de Bruijn graphs, Pell et al.,
2012.

Since then, we have published several additional papers.

Please also see the instructions for citing our papers and software.

Biological uses outside of the group

See this list of papers for publications using khmer to analyze their sequencing data.

Tools building on khmer concepts

Several research papers have built off of concepts introduced in or elaborated on khmer.

2.6.11 How to get help

First, be sure that you:

1. Read the documentation (this site)

2. Google search for the error output and/or keywords related to your problem. Here you can search results from
the mailing list, where others may have discussed solutions to the same issue.

56 Chapter 2. Details

http://galaxyproject.org/
https://wiki.galaxyproject.org/Learn/Datatypes
https://wiki.galaxyproject.org/Learn/Datatypes
http://www.pnas.org/content/109/33/13272.full
http://www.pnas.org/content/109/33/13272.full
http://www.ncbi.nlm.nih.gov/sites/myncbi/1ruvipqAmaMkN/collections/48107445/public/
https://github.com/dib-lab/khmer/blob/master/CITATION
http://www.ncbi.nlm.nih.gov/sites/myncbi/1ruvipqAmaMkN/collections/48107393/public/
http://www.ncbi.nlm.nih.gov/sites/myncbi/1ruvipqAmaMkN/collections/48101567/public/

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Mailing List

The primary way to get help is through the khmer discussion list: http://lists.idyll.org/listinfo/khmer, though we are
also available for closer-to-realtime support via Gitter.

Asking a question

1. Include your:

• OS version (Mac OS X or Linux): uname -mrs

• Python version: python --version

• and khmer version: pip freeze | grep khmer

2. Precisely describe what you are trying to do. Reread it from the perspective of someone else trying to reproduce
your task.

3. Copy-and-paste the exact command that is causing the problem. Include the steps you performed leading up to
the issue.

4. Include the complete error message; if it is large, include a link to a file.

GitHub

You are also welcome to report an issue you are having using GitHub: https://github.com/dib-lab/khmer/issues/new

2.7 The khmer developer documentation

This section of the documentation is for people who are contributing (or would like to contribute to) the khmer project
codebase, either by contributing code or by helping improve the documentation.

Please note that this project is released with a Contributor Code of Conduct. By participating in the development of
this project you agree to abide by its terms.

Contents:

2.7.1 Contributor Code of Conduct

As contributors and maintainers of this project, we pledge to respect all people who contribute through reporting
issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level
of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size,
race, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual language or imagery, derogatory com-
ments or personal attacks, trolling, public or private harassment, insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct. Project maintainers or contributors who
do not follow the Code of Conduct may be removed from the project team.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by emailing khmer-
project@idyll.org which only goes to C. Titus Brown and Michael R. Crusoe. To report an issue involving either

2.7. The khmer developer documentation 57

http://lists.idyll.org/listinfo/khmer
https://gitter.im/dib-lab/khmer
https://github.com/dib-lab/khmer/issues/new
mailto:khmer-project@idyll.org
mailto:khmer-project@idyll.org

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

of them please email Judi Brown Clarke, Ph.D. the Diversity Director at the BEACON Center for the Study of Evolu-
tion in Action, an NSF Center for Science and Technology.

This Code of Conduct is adapted from the Contributor Covenant, version 1.0.0, available at http://contributor-
covenant.org/version/1/0/0/

2.7.2 Getting started with khmer development

Contents

• Getting started with khmer development
– One-time Preparation
– Building khmer and running the tests
– Claiming an issue and starting to develop
– After your first issue is successfully merged...
– Your second contribution...
– Advanced merging with git-merge-changelog
– Pull request cleanup (commit squashing)

This document is for people who would like to contribute to khmer. It walks first-time contributors through making
their own copy of khmer, building it, and submitting changes for review and merge into the master copy of khmer.

Start by making your own copy of khmer and setting yourself up for development; then, build khmer and run the tests;
and finally, claim an issue and start developing!

If you’re unfamiliar with git and branching in particular, check out the git-scm book.

We’ve provided a quick guide to the khmer code base here: A quick guide to the khmer codebase.

One-time Preparation

1. Install the dependencies.

OS X users

(a) Install Xcode from the Mac App Store (requires root).

(b) Register as an Apple Developer.

(c) Install the Xcode command-line tools: Xcode -> preferences -> Downloads -> Command Line Tools
(requires root).

Linux users

(a) Install the python development environment, virtualenv, pip, gcc, and g++.

On recent Debian and Ubuntu this can be done with:

sudo apt-get install python2.7-dev python-virtualenv python-pip gcc \
g++ git astyle gcovr cppcheck

For RHEL6:

sudo yum install -y python-devel python-pip git gcc gcc-c++ make
sudo pip install virtualenv

58 Chapter 2. Details

mailto:jbc@egr.msu.edu
http://contributor-covenant.org
http://contributor-covenant.org/version/1/0/0/
http://contributor-covenant.org/version/1/0/0/
http://git-scm.com/book/en/Git-Branching
https://developer.apple.com/xcode/
https://developer.apple.com/register

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

For Arch Linux:

sudo pacman -S python2 python2-pip python2-virtualenv gcc make

2. Get a GitHub account.

(We use GitHub to manage khmer contributions.)

3. Fork github.com/dib-lab/khmer.

Visit that page, and then click on the ‘fork’ button (upper right).

(This makes a copy of the khmer source code in your own GitHub account.)

4. Clone your copy of khmer to your local development environment.

Your clone URL should look something like this:

https://github.com/empty-titus/khmer.git

and the UNIX shell command should be:

git clone https://github.com/empty-titus/khmer.git

(This makes a local copy of khmer on your development machine.)

5. Add a git reference to the khmer dib-lab repository:

cd khmer
git remote add dib https://github.com/dib-lab/khmer.git
cd ../

(This makes it easy for you to pull down the latest changes in the main repository.)

6. Create a virtual Python environment within which to work with virtualenv:

python2.7 -m virtualenv env

This gives you a place to install packages necessary for running khmer.

OS X users and others may need to download virtualenv first:

curl -O https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.11.6.tar.gz
tar xzf virtualenv*
cd virtualenv-*; python2.7 virtualenv.py ../env; cd ..

Mac ports users on the OS X platform can install pip by execution from the command line:

sudo port install py27-pip

Homebrew users on the OS X platform will have pip already installed

Conda users on any platform should instead create a separate Conda environment:

conda create -n khmer anaconda

7. Activate the virtualenv and install a few packages:

source env/bin/activate
cd khmer
make install-dependencies

(This installs Sphinx and nose, packages we use for building the documentation and running the tests.)

In Conda to activate the previously created environment and install dependencies:

2.7. The khmer developer documentation 59

http://github.com
https://github.com/dib-lab/khmer
https://pypi.python.org/pypi/virtualenv
https://www.macports.org/
http://brew.sh/
https://github.com/conda/conda
http://sphinx-doc.org/
https://nose.readthedocs.org/en/latest/

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

source activate khmer
cd khmer
make install-dependencies

8. Cppcheck installation:

Debian and Ubuntu Linux distro users can install cppcheck by executing from the command line:

sudo apt-get install cppcheck

Mac ports users on the OS X platform can install cppcheck by executing from the command line:

sudo port install cppcheck

Homebrew users on the OS X platform can install cppcheck by executing from the command line:

sudo brew install cppcheck

9. ccache installation:

Debian and Ubuntu Linux distro users can install ccache to speed up their compile times:

sudo apt-get install ccache
echo 'export PATH="/usr/lib/ccache:$PATH" # enable ccache' >> ~/.bashrc
export PATH="/usr/lib/ccache:$PATH"

Building khmer and running the tests

1. Activate (or re-activate) the virtualenv:

source ../env/bin/activate

... or for Conda users:

source activate khmer

You can run this many times without any ill effects.

(This puts you in the development environment.)

2. Build khmer:

make

If this fails, we apologize – please go create a new issue, paste in the failure message, and we’ll try to help you
work through it!

(This takes the C++ source code and compiles it into something that Python can run.)

3. Run the tests:

make test

You should see lots of output, with something like:

Ran 633 tests in 47.446s

OK

at the end.

(This will run all of the Python tests in the tests/ directory.)

Congratulations! You’re ready to develop!

60 Chapter 2. Details

https://www.debian.org/
http://www.ubuntu.com/
https://www.macports.org/
http://brew.sh/
https://github.com/dib-lab/khmer/issues?direction=desc&sort=created&state=open

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Claiming an issue and starting to develop

1. Find an open issue and claim it.

Go to the list of open khmer issues and find one you like; we suggest starting with the low-hanging fruit issues).

Once you’ve found an issue you like, make sure that no one has been assigned to it (see “assignee”, bottom right
near “notifications”). Then, add a comment “I am working on this issue.” You’ve staked your claim!

(We’re trying to avoid having multiple people working on the same issue.)

2. In your local copy of the source code, update your master branch from the main khmer master branch:

git checkout master
git pull dib master

(This pulls in all of the latest changes from whatever we’ve been doing on dib-lab.)

It is possible that when you do a git pull you will get a “merge conflict” – This is what happens when something
changed in the branch you’re pulling in in the same place you made a change in your local copy. This frequently
happens in the ChangeLog file.

Git will complain loudly about merges and tell you specifically in which files they occurred. If you open the
file, you’ll see something vaguely like this in the place where the merge occurred:

<<<<<<< HEAD
Changes made on the branch that is being merged into. In most cases,
this is the branch that you have currently checked out
=======
Changes made on the branch that is being merged in, almost certainly
master.
>>>>>>> abcde1234

Though there are a variety of tools to assist with resolving merge conflicts they can be quite complicated at first
glance and it is usually easy enough to manually resolve the conflict.

To resolve the conflict you simply have to manually ‘meld’ the changes together and remove the merge markers.

After this you’ll have to add and commit the merge just like any other set of changes. It’s also recommended
that you run tests.

3. Create a new branch and link it to your fork on GitHub:

git checkout -b fix/brief_issue_description
git push -u origin fix/brief_issue_description

where you replace “brief_issue_description” with 2-3 words, separated by underscores, describing the issue.

(This is the set of changes you’re going to ask to be merged into khmer.)

4. Make some changes and commit them.

Though this will largely be issue-dependent the basics of committing are simple. After you’ve made a cohesive
set of changes, run the command git status. This will display a list of all the files git has noticed you changed.
A file in the ‘untracked’ section are files that haven’t existed previously in the repository but git has noticed.

To commit changes you have to ‘stage’ them–this is done by issuing the following command:

git add path/to/file

If you have a large quantity of changes and you don’t want to add each file manually you can do git add
--patch which will display each set of changes to you before staging them for commit.

Once you have staged your changes, it’s time to make a commit:

2.7. The khmer developer documentation 61

https://github.com/dib-lab/khmer/issues?direction=desc&sort=created&state=open
https://github.com/dib-lab/khmer/issues?direction=desc&labels=low-hanging-fruit&page=1&sort=created&state=open

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

git commit

Git will then open your default console text editor to write a commit message – this is a short (typically 1-3
sentence) description of the changes you’ve made. Please make your commit message informative but concise
– these messages become part of the ‘official’ history of the project.

Once your changes have been committed, push them up to the remote branch:

git push

If this is your first commit on a new branch git will error out, telling you the remote branch doesn’t exist – This
is fine, as it will also provide the command to create the branch. Copy/paste/run and you should be set.

You should also visit and read Coding guidelines and code review checklist.

5. Periodically update your branch from the main khmer master branch:

git pull dib master

(This pulls in all of the latest changes from whatever we’ve been doing on dib-lab - important especially during
periods of fast change or for long-running pull requests.

6. Run the tests and/or build the docs before pushing to GitHub:

make doc test pep8 diff-cover

Make sure they all pass!

7. Push your branch to your own GitHub fork:

git push origin

(This pushes all of your changes to your own fork.)

8. Repeat until you’re ready to merge your changes into “official” khmer.

9. Set up a Pull Request asking to merge things into the central khmer repository.

In a Web browser, go to your GitHub fork of khmer, e.g.:

https://github.com/empty-titus/khmer

and you will see a list of “recently pushed branches” just above the source code listing. On the right side of that
should be a “Compare & pull request” green button. Click on it!

Now:

• add a descriptive title (“updated tests for XXX”)

• put the issue number in the comment (“fixes issue #532”)

then click “Create pull request.”

(This creates a new issue where we can all discuss your proposed changes; the khmer team will be automatically
notified and you will receive e-mail notifications as we add comments. See GitHub flow for more info.)

10. Paste in the committer checklist from Coding guidelines and code review checklist and, after its pasted in, check
off as many of the boxes as you can.

11. As you add new commits to address bugs or formatting issues, you can keep pushing your changes to the pull
request by doing:

git push origin

62 Chapter 2. Details

http://scottchacon.com/2011/08/31/github-flow.html

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

12. When you are ready to have the pull request reviewed, please mention @luizirber, @camillescott, @mr-c, or
@ctb with a comment ‘Ready for review!’

13. The khmer team will now review your pull request and communicate with you through the pull request page.
Please feel free to add ‘ping!’ and an @ in the comments if you are looking for feedback – this will alert us that
you are still on the line – but we will automatically get notified of your pull request and any new comments, so
use sparingly.

If this is still your first issue, please don’t take another issue until we’ve merged your first one - thanks!

14. If we request changes, return to the step “Make some changes and commit them” and go from there. Any
additional commits you make and push to your branch will automatically be added to the pull request (which is
pretty dang cool.)

After your first issue is successfully merged...

You’re now an experienced GitHub user! Go ahead and take some more tasks; you can broaden out beyond the low
hanging fruit if you like.

Here are a few suggestions:

• If you’re knowledgeable in C++ and/or Python and/or documentation and/or biology, we’d love to attract further
contributions to khmer. Please visit the issues list and browse about and find something interesting looking.

• One general thing we’d like to do is increase our test coverage. You can go find test coverage information on
our continuous integration server by clicking down to individual files; or, ask us on khmer-project@idyll.org for
suggestions.

• Ask us! Ask khmer-project@idyll.org for suggestions on what to do next. We can suggest particularly ripe
low-hanging fruit, or find some other issues that suit your interests and background.

• You can also help other people out by watching for new issues or looking at pull requests. Remember to be nice
and polite!

Your second contribution...

Here are a few pointers on getting started on your second (or third, or fourth, or nth contribution).

So, assuming you’ve found an issue you’d like to work on there are a couple things to do to make sure your local copy
of the repository is ready for a new issue–specifically, we need to make sure it’s in sync with the remote repository so
you aren’t working on a old copy. So:

git checkout master
git fetch --all
git pull

This puts you on the latest master branch and pulls down updates from GitHub with any changes that may have
been made since your last contribution (usually including the merge of your last contribution). Then we merge those
changes into your local copy of the master branch.

Now, you can go back to Claiming an issue and starting to develop.

Advanced merging with git-merge-changelog

Often one can get a merge conflict due to updates in the ChangeLog. To teach Git how to handle these on its own you
can install a special merge driver.

On Debian & Ubuntu systems you’ll need the git-merge-changelog package:

2.7. The khmer developer documentation 63

http://ci.ged.msu.edu/job/khmer-master/label=linux/cobertura
http://ci.ged.msu.edu/job/khmer-master/label=linux/cobertura
mailto:khmer-project@idyll.org
mailto:khmer-project@idyll.org

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

sudo apt-get install git-merge-changelog

Ubuntu 14.04 LTS users will need to add an external repository that contains a backport of the package first before
installing:

sudo apt-add-repository ppa:misterc/gedlab
sudo apt-get update
sudo apt-get install git-merge-changelog

Everyone should then update their ~/.gitconfig file with the following:

[merge "merge-changelog"]
name = GNU-style ChangeLog merge driver
driver = /usr/bin/git-merge-changelog %O %A %B

Pull request cleanup (commit squashing)

Submitters are invited to reduce the numbers of commits in their pull requests either via git rebase -i dib/master or
this recipe:

git pull # make sure the local is up to date
git pull dib master # get up to date
fix any merge conflicts
git status # sanity check
git diff dib/master # does the diff look correct? (no merge markers)
git reset --soft dib/master # un-commit the differences from dib/master
git status # sanity check
git commit --all # package all differences in one commit
git status # sanity check
git push # should fail
git push --force # override what's in GitHub's copy of the branch/pull request

2.7.3 A quick guide to testing (for khmer)

This document is for contributors new to automated testing, and explains some of the motivation and logic behind the
khmer project’s testing approach.

One of our most important “secret sauces” for khmer development is that we do a fair bit of testing to make sure our
code works and keeps working!

• We maintain fairly complete test coverage of our code. What this means is that we have automated tests that,
when run, execute most of the lines of Python and C++ code in our lib/, khmer/ and scripts/ directories. This
doesn’t guarantee things are correct, but it does mean that at least most of the code works at some basic level.

• we have other tests that we run periodically (for example, before each release) – see Releasing a new version of
khmer for details. These tests check that our code works on multiple systems and with other people’s software.

CTB and others have written a great deal about testing, and testing in Python in particular. Here’s an introductory
guide CTB wrote a long time ago. You might also be interested in reading this description of the different kinds of
tests.

For the more general motivation, see the Lack of Testing Death Spiral.

But... how do you do testing??

64 Chapter 2. Details

http://ivory.idyll.org/articles/nose-intro.html
http://ivory.idyll.org/articles/nose-intro.html
http://www.ibm.com/developerworks/library/j-test/index.html
http://www.ibm.com/developerworks/library/j-test/index.html
http://ivory.idyll.org/blog/software-quality-death-spiral.html

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

First, let’s talk about specific goals for testing. What should you be aiming for tests to do? You can always add more
testing code, but that might not be useful if they are redundant or over-complicated.

An overall rule is to “keep it simple” – keep things as simple as possible, testing as few things as possible in each test.

We suggest the following approach to writing tests for new code:

1. Write a test that just runs the new code, generally by copying existing test code to a new test and changing it.
Don’t do anything clever for the first test – just run something straightforward, and try to use existing data.

2. Decide which use cases should be tested. This is necessarily code specific but our main advice is “don’t be
clever” – write some tests to make sure that the code basically works.

3. Add in tests for edge cases. By this we mean look for special cases in your code – if statements, fence-post
bound errors, etc. – and write tests that exercise those bits of code specifically.

4. Make sure tests that expect a function call to fail (esp. with fail_ok=True) are failing for the expected reason.
Run the code from the command line and see what the behavior is. For troubleshooting tests, catch the error
with try: ... except: or print err.

For adding tests to old code, we recommend a mix of two approaches:

1. use “stupidity driven testing” and write tests that recapitulate bugs before we fix those bugs.

2. look at test coverage (see khmer’s cobertura test coverage, here) and identify lines of C++ or Python code that
are not being executed by the current tests. Then write new tests targeting the new code.

Next, to add a test, you have two options: either write a new one from scratch, or copy an existing one. (We recommend
the latter.)

To write a new one, you’ll need to know how to write tests. For getting an idea of the syntax, read this introductory
guide and the official documentation. Then find the right file in tests/*.py and add your test!

A better approach is, frankly, to go into the existing test code, find a test that does something similar to what you want
to do, copy it, rename it, and then modify it to do the new test.

Finally, where do you add new tests and how do you run just your test?

Put new tests somewhere in tests/*.py. If you have trouble figuring out what file to add them to, just put them in
some file and we’ll help you figure out where to move them when we do code review.

To run one specific test rather than all of them, you can do:

./setup.py nosetests --tests tests/test_scripts.py:test_load_into_counting

Here, you’re running just one test – the test function named test_load_into_counting in the file
test_scripts.py.

2.7.4 A quick guide to the khmer codebase

This document describes the khmer project’s directory layout.

The ChangeLog file lists changes to the codebase, most recent first.

The lib/ directory contains all of the C++ code.

The khmer/ directory contains the khmer package (khmer/__init__.py, etc) and the C++-to-Python bridge
(khmer/_khmermodule.cc).

2.7. The khmer developer documentation 65

http://ivory.idyll.org/blog/stupidity-driven-testing.html
http://ci.ged.msu.edu/job/khmer-master/label=linux/cobertura
http://ivory.idyll.org/articles/nose-intro.html
http://ivory.idyll.org/articles/nose-intro.html
https://nose.readthedocs.org/en/latest/writing_tests.html

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

The scripts/ and sandbox/ directory contain Python command-line scripts.

The tests/ directory contains all of the tests. Each test is a function in one of the tests/test*.py files.

2.7.5 Coding guidelines and code review checklist

This document is for anyone who want to contribute code to the khmer project, and describes our coding standards
and code review checklist.

C++ standards

Any feature in C++11 is fine to use. Specifically we support features found in GCC 4.8.2. See https://github.com/dib-
lab/khmer/issues/598 for an in-depth discussion.

Coding standards

All plain-text files should have line widths of 80 characters or less unless that is not supported for the particular file
format.

For C++, we use Todd Hoff’s coding standard, and astyle -A10 / “One True Brace Style” indentation and bracing.
Note: @CTB needs Emacs settings that work for this.

Vim users may want to set the ARTISTIC_STYLE_OPTIONS shell variable to “-A10 –max-code-length=80” and run
‘:%!astyle‘ to reformat. The four space indentation can be set with:

set expandtab
set shiftwidth=4
set softtabstop=4

For Python, PEP 8 is our standard. The ‘pep8‘ and ‘autopep8‘ Makefile targets are helpful.

Code, scripts, and documentation must have their spelling checked.

Python-based codespell can be applied to multiple files easily. codespell can be installed via the following:

mkdir ~/bin
git clone git@github.com:lucasdemarchi/codespell.git
cd codespell
make prefix=${HOME} install
export PATH=$PATH:~/bin/

Note, if you want codespell to always be available you will need to add the export line to your ${HOME}.bashrc or
equivalent.

To run codespell over only what has been changed on the branch my-branch:

git diff master..my-branch > diff_file
codespell diff_file

To run codespell over a single file:

codespell path/to/file

To make codespell fix the issues it finds automatically:

codespell -w path/to/file

66 Chapter 2. Details

https://github.com/dib-lab/khmer/issues/598
https://github.com/dib-lab/khmer/issues/598
http://www.possibility.com/Cpp/CppCodingStandard.html
http://astyle.sourceforge.net/astyle.html
http://www.python.org/dev/peps/pep-0008/

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Please note that as codespell works off of a listing of possible misspellings it may not catch all errors. If you find
a spelling error that is not caught by codespell feel free to open a pull request at the project page to add it to the
dictionary.

Vim users can run:

:setlocal spell spelllang=en_us

Use]s and [s to navigate between misspellings and z= to suggest a correctly spelled word. zg will add a word as a
good word.

GNU aspell can also be used to check the spelling in a single file:

aspell check --mode ccpp $filename

Code Review

Please read 11 Best Practices for Peer Code Review.

See also Code reviews: the lab meeting for code and the PyCogent coding guidelines.

Checklist

Copy and paste the following into a pull request comment when it is ready for review:

- [] Is it mergeable?
- [] Did it pass the tests?
- [] If it introduces new functionality in scripts/ is it tested?

Check for code coverage with `make clean diff-cover`
- [] Is it well formatted? Look at `make pep8`, `make diff_pylint_report`,

`make cppcheck`, and `make doc` output. Use `make format` and manual
fixing as needed.

- [] Did it change the command-line interface? Only additions are allowed
without a major version increment. Changing file formats also requires a
major version number increment.

- [] Is it documented in the ChangeLog?
http://en.wikipedia.org/wiki/Changelog#Format

- [] Was a spellchecker run on the source code and documentation after
changes were made?

- [] Do the changes respect streaming IO? (Are they
tested for streaming IO?)

- [] Is the Copyright year up to date?

Note that after you submit the comment you can check and uncheck the individual boxes on the formatted comment;
no need to put x or y in the middle.

CPython Checklist

Here’s a checklist for new CPython types with future-proofing for Python 3:

- [] the CPython object name is of the form `khmer_${OBJECTNAME}_Object`
- [] Named struct with `PyObject_HEAD` macro
- [] `static PyTypeObject khmer_${OBJECTNAME}_Type` with the following

entries
- [] `PyVarObject_HEAD_INIT(NULL, 0)` as the object init (this includes

the `ob_size` field).
- [] all fields should have their name in a comment for readability

2.7. The khmer developer documentation 67

https://github.com/lucasdemarchi/codespell
http://smartbear.com/SmartBear/media/pdfs/WP-CC-11-Best-Practices-of-Peer-Code-Review.pdf
http://fperez.org/py4science/code_reviews.html
http://pycogent.org/coding_guidelines.html

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

- [] The `tp_name` filed is a dotted name with both the module name and
the name of the type within the module. Example: `khmer.ReadAligner`

- [] Deallocator defined and cast to `(destructor)` in tp_dealloc
- [] The object's deallocator must be

`Py_TYPE(obj)->tp_free((PyObject*)obj);`
- [] Do _not_ define a `tp_getattr`
- [] BONUS: write methods to present the state of the object via

`tp_str` & `tp_repr`
- [] _Do_ pass in the array of methods in `tp_methods`
- [] _Do_ define a new method in `tp_new`

- [] PyMethodDef arrays contain doc strings
- [] Methods are cast to `PyCFunctions`s

- [] Type methods use their type Object in the method signature.
- [] Type creation method decrements the reference to self

(`Py_DECREF(self);`) before each error-path exit (`return NULL;`)
- [] No factory methods. Example: `khmer_new_readaligner`
- [] Type object is passed to `PyType_Ready` and its return code is checked

in `init_khmer()`
- [] The reference count for the type object is incremented before adding

it to the module: `Py_INCREF(&khmer_${OBJECTNAME}_Type);`.

2.7.6 Command line scripts, scripts/, and sandbox/

Note: This document applies through khmer/oxli 2.0/3.0 (see Roadmap to v2.0, v3.0, v4.0) - we will revisit when the
Python API falls under semantic versioning for oxli 4.0.

khmer has two conflicting goals: first, we want to provide a reliable piece of software to our users; and second, we
want to be flexible and enable exploration of new algorithms and programs. To this end, we’ve split our command line
scripts across two directories, scripts/ and sandbox/. The former is the staid, boring, reliable code; the latter is
a place for exploration.

As a result, we are committed to high test coverage, stringent code review, and Semantic Versioning for files in
scripts/, but explicitly not committed to this for files and functionality implemented in sandbox/. So, putting a
file into scripts/ is a big deal, especially since it increases our maintenance burden for the indefinite future.

We’ve roughed out the following process for moving scripts into scripts/:

• Command line scripts start in sandbox/;

• Once their utility is proven (in a paper, for example), we can propose to move them into scripts/;

• There’s a procedure for moving scripts from sandbox/ into scripts/.

Read on!

Sandbox script requirements and suggestions

All scripts in sandbox/ must:

• be importable (enforced by test_import_all in test_sandbox_scripts.py)

• be mentioned in sandbox/README.rst

• have a hash-bang line (#! /usr/bin/env python) at the top

• be command-line executable (chmod a+x)

• have a Copyright message (see below)

68 Chapter 2. Details

http://semver.org/

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

• have lowercase names

• use ‘-‘ as a word separator, rather than ‘_’ or CamelCase

All new scripts being added to sandbox/ should:

• have decent automated tests

• be used in a protocol (see khmer-protocols) or a recipe (see khmer-recipes)

• be pep8 clean and pylint clean-ish (see make pep8 and make_diff_pylint).

Command line standard options for scripts/

All scripts in scripts/ should have the following options, if they could apply:

• --version - should always apply

• --help - should always apply

• --force - override any sanity checks that may prevent the script from running

• --loadgraph and --savegraph - where appropriate (see khmer_args.py)

If an option is of type type=argparse.FileType(’w’) then you need to also specify a metavar for the
documentation and help formatting. Example:

parser.add_argument('-R', '--report', metavar='report_filename',
type=argparse.FileType('w'))

Copyright message

The copyright message should be of the form:

#
This file is part of khmer, https://github.com/dib-lab/khmer/, and is
Copyright (C) ___WHO___, ___YEAR(s)___. It is licensed under
the three-clause BSD license; see doc/LICENSE.txt.
Contact: khmer-project@idyll.org
#

Where ___WHO___ is replaced with one or more of “Michigan State University” or “The Regents of the University
of California” and ___YEAR(s)___ is replaced with the year or years the file was created or modified. The copyright
statement for new files should only refer to “The Regents of the University of California”.

Upgrading a script from ‘sandbox’ to ‘scripts’

First, everything needed (all library support code) should be already committed to khmer master after the usual review
process; the relevant script(s) should be in sandbox/.

Second, an issue should be started explicitly to discuss whether the script(s) should be moved from sandbox/ into
scripts/. This issue should discuss the general need for this script, outside of a particular paper pipeline. (Note
that there is no imperative to move a script out of sandbox/; if we think it’s useful code to have around and want to
keep it functioning, we should just add in automated tests and otherwise level it up.)

Third, assuming we reach general agreement about moving the script(s) into scripts/, start a pull request to do
so, referencing the issue and containing the following checklist. The PR should start by moving the script from
sandbox/ into scripts/, and moving the tests out of the test_sandbox_scripts.py file.

2.7. The khmer developer documentation 69

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Last but not least, intensive code review may raise more general issues that could apply to the entire code base; if
contentious or needing discussion, these issues may be punted to general issues so as to not block a merge.

A checklist for moving a script into the scripts/ directory from sandbox/

Copy or paste this checklist into the PR, in addition to the normal development/PR checklist:

- [] most or all lines of code are covered by automated tests (see output of ``make diff-cover``)
- [] ``make diff_pylint`` is clean
- [] the script has been updated with a ``get_parser()`` and added to doc/user/scripts.txt
- [] argparse help text exists, with an epilog docstring, with examples and options
- [] standard command line options are implemented
- [] version and citation information is output to STDERR (`khmer_args.info(...)`)
- [] support '-' (STDIN) as an input file, if appropriate
- [] support designation of an output file (including STDOUT), if appropriate
- [] script reads and writes sequences in compressed format
- [] runtime diagnostic information (progress, etc.) is output to STDERR
- [] script has been removed from sandbox/README.rst

2.7.7 A guide for khmer committers

This document is for people with commit rights to github.com/dib-lab/khmer.

If you have commit privileges to the dib-lab/khmer repository, here are a few useful tips.

First, never merge something unless it’s been through a review! This rule can be broken under specific conditions
when doing a release; see Releasing a new version of khmer.

Second, need to force another continuous integration run? Put “test this please” in a comment. This is used to ask our
continuous integration system to run on someone else’s pull request – by default, it only runs on commits from people
who have write privileges to khmer, so you may need to do this if you’re reviewing someone else’s pull request.

Third, we ask that all contributors set up standing Pull Requests while they are working something. (This is a require-
ment if you’re in the DIB lab.) This lets us track what’s going on. On the flip side, please do not review pull requests
until they are indicated as “ready for review”.

2.7.8 Releasing a new version of khmer

This document is for khmer release managers, and details the process for making a new release of the khmer project.

How to make a khmer release candidate

Michael R. Crusoe, Luiz Irber, and C. Titus Brown have all been release makers, following this checklist by MRC.

1. The below should be done in a clean checkout:

cd `mktemp -d`
git clone git@github.com:dib-lab/khmer.git
cd khmer

2. (Optional) Check for updates to versioneer:

70 Chapter 2. Details

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

pip install --upgrade versioneer
versioneer-installer

git diff

./setup.py versioneer
git diff
git commit -m -a "new version of versioneer.py"
or
git checkout -- versioneer.py khmer/_version.py khmer/__init__.py MANIFEST.in

3. Review the git logs since the last release and diffs (if needed) and ensure that the ChangeLog is up to date:

git log --minimal --patch `git describe --tags --always --abbrev=0`..HEAD

4. Review the issue list for any new bugs that will not be fixed in this release. Add them to
doc/known-issues.txt

5. Verify that the build is clean: http://ci.oxli.org/job/khmer-master/

6. Submit a build to Coverity Scan if it hasn’t been done recently. You can get
the token from https://gitlab.msu.edu/ged-lab/ged-internal-docs/wikis/coverity-scan or
https://scan.coverity.com/projects/621?tab=project_settings

virtualenv coverityenv
source coverityenv/bin/activate
make install-dependencies
make clean
cov_analysis_dir=~/src/coverity/cov-analysis-linux64-7.5.0/ make coverity-build
COVERITY_TOKEN=${COVERITY_TOKEN} make coverity-upload

7. Set your new version number and release candidate:

new_version=1.3
rc=rc1

and then tag the release candidate with the new version number prefixed by the letter ‘v’:

git tag v${new_version}-${rc}
git push --tags git@github.com:dib-lab/khmer.git

8. Test the release candidate. Bonus: repeat on Mac OS X:

cd ..
virtualenv testenv1
virtualenv testenv2
virtualenv testenv3
virtualenv testenv4
First we test the tag

cd testenv1
source bin/activate
git clone --depth 1 --branch v${new_version}-${rc} https://github.com/dib-lab/khmer.git
cd khmer
make install-dependencies
make test
normalize-by-median.py --version 2>&1 | grep khmer\ ${new_version}-${rc} && \

echo 1st manual version check passed
pip uninstall -y khmer; pip uninstall -y khmer; make install
mkdir ../not-khmer # if there is a subdir named 'khmer' nosetest will execute tests

2.7. The khmer developer documentation 71

http://ci.oxli.org/job/khmer-master/
https://gitlab.msu.edu/ged-lab/ged-internal-docs/wikis/coverity-scan
https://scan.coverity.com/projects/621?tab=project_settings

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

there instead of the installed khmer module's tests
pushd ../not-khmer; nosetests khmer --attr '!known_failing'; popd

Secondly we test via pip

cd ../../testenv2
source bin/activate
pip install -U setuptools==3.4.1
pip install -e git+https://github.com/dib-lab/khmer.git@v${new_version}-${rc}#egg=khmer
cd src/khmer
make install-dependencies
make dist
make test
cp dist/khmer*tar.gz ../../../testenv3/
pip uninstall -y khmer; pip uninstall -y khmer; make install
cd ../.. # no subdir named khmer here, safe for nosetesting installed khmer module
normalize-by-median.py --version 2>&1 | grep khmer\ ${new_version}-${rc} && \

echo 2nd manual version check passed
nosetests khmer --attr '!known_failing'

Is the distribution in testenv2 complete enough to build another
functional distribution?

cd ../testenv3/
source bin/activate
pip install -U setuptools==3.4.1
pip install khmer*tar.gz
pip install nose
tar xzf khmer*tar.gz
cd khmer*
make dist
make test
pip uninstall -y khmer; pip uninstall -y khmer; make install
mkdir ../not-khmer
pushd ../not-khmer ; nosetests khmer --attr '!known_failing' ; popd

9. Publish the new release on the testing PyPI server. You will need to change your PyPI credentials as documented
here: https://wiki.python.org/moin/TestPyPI. You may need to re-register:

python setup.py register --repository test

Now, upload the new release:

python setup.py sdist upload -r test

Test the PyPI release in a new virtualenv:

cd ../../testenv4
source bin/activate
pip install -U setuptools==3.4.1
pip install screed nose
pip install -i https://testpypi.python.org/pypi --pre --no-clean khmer
nosetests khmer --attr '!known_failing'
normalize-by-median.py --version 2>&1 | grep khmer\ ${new_version}-${rc} && \

echo 3rd manual version check passed
cd build/khmer
make test

72 Chapter 2. Details

https://wiki.python.org/moin/TestPyPI

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

10. Do any final testing (BaTLab and/or acceptance tests).

11. Make sure any release notes are merged into doc/release-notes/.

How to make a final release

When you’ve got a thoroughly tested release candidate, cut a release like so:

1. Create the final tag and publish the new release on PyPI (requires an authorized account).:

cd ../../../khmer
git tag v${new_version}
python setup.py register sdist upload

2. Delete the release candidate tag and push the tag updates to GitHub.:

git tag -d v${new_version}-${rc}
git push git@github.com:dib-lab/khmer.git
git push --tags git@github.com:dib-lab/khmer.git

3. Add the release on GitHub, using the tag you just pushed. Name it ‘version X.Y.Z’, and copy and paste in the
release notes.

4. Make a binary wheel on OS X.:

virtualenv build
cd build
source bin/activate
pip install -U setuptools==3.4.1 wheel
pip install --no-clean khmer==${new_version}
cd build/khmer
./setup.py bdist_wheel upload

5. Update Read the Docs to point to the new version. Visit https://readthedocs.org/builds/khmer/ and ‘Build Ver-
sion: master’ to pick up the new tag. Once that build has finished check the “Activate” box next to the new
version at https://readthedocs.org/dashboard/khmer/versions/ under “Choose Active Versions”. Finally change
the default version at https://readthedocs.org/dashboard/khmer/advanced/ to the new version.

6. Delete any RC tags created:

git tag -d ${new_version}-${rc}
git push origin :refs/tags/${new_version}-${rc}

7. Tweet about the new release.

8. Send email including the release notes to khmer@lists.idyll.org and khmer-announce@lists.idyll.org

BaTLab testing

The UW-Madison Build and Test Lab provides the khmer project with a free cross-platform testing environment.

1. Connect to their head node:

ssh mcrusoe@submit-1.batlab.org

2. Move into the khmer directory and download a release from PyPI’s main server or the test PyPI server:

2.7. The khmer developer documentation 73

https://readthedocs.org/builds/khmer/
https://readthedocs.org/dashboard/khmer/versions/
https://readthedocs.org/dashboard/khmer/advanced/
mailto:khmer@lists.idyll.org
mailto:khmer-announce@lists.idyll.org

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

cd khmer/
wget https://testpypi.python.org/packages/source/k/khmer/khmer-1.0.1-rc3.tar.gz
vim khmer-v1.0.inputs # change the 'scp_file' to point to the release
vim khmer-v1.0.run-spec # change 'project_version' at bottom
nmi_submit khmer-v1.0.run-spec

Setuptools Bootstrap

ez_setup.py is from https://bitbucket.org/pypa/setuptools/raw/bootstrap/

Before major releases it should be examined to see if there are new versions available and if the change would be
useful

Versioning Explanation

Versioneer, from https://github.com/warner/python-versioneer, is used to determine the version number and
is called by Setuptools and Sphinx. See the files versioneer.py, the top of khmer/__init__.py,
khmer/_version.py, setup.py, and doc/conf.py for the implementation.

The version number is determined through several methods: see https://github.com/warner/python-versioneer#version-
identifiers

If the source tree is from a git checkout then the version number is derived
by git describe --tags --dirty --always. This will be in the format
${tagVersion}-${commits_ahead}-${revision_id}-${isDirty}. Example:
v0.6.1-18-g8a9e430-dirty

If from an unpacked tarball then the name of the directory is queried.

Lacking either of the two git-archive will record the version number at the top of khmer/_version.py via the
$Format:%d$ and $Format:%H$ placeholders enabled by the “export-subst” entry in .gitattributes.

Non source distributions will have a customized khmer/_version.py that contains hard-coded version strings.
(see build/*/khmer/_version.py after a python setup.py build for an example)

ez_setup.py bootstraps Setuptools (if needed) by downloading and installing an appropriate version

2.7.9 Miscellaneous implementation details

Partition IDs are “stored” in FASTA files as an integer in the last tab-separated field. Yeah, dumb, huh?

2.7.10 Development miscellany

Third-party use

We ask that third parties who build upon the codebase to do so from a versioned release. This will help them determine
when bug fixes apply and generally make it easier to collaborate. If more intensive modifications happen then we
request that the repository is forked, again preferably from a version tag.

Build framework

make should build everything, including tests and “development” code.

74 Chapter 2. Details

https://bitbucket.org/pypa/setuptools/raw/bootstrap/
https://github.com/warner/python-versioneer
https://github.com/warner/python-versioneer#version-identifiers
https://github.com/warner/python-versioneer#version-identifiers

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

git and GitHub strategies

Still in the works, but read this.

Make a branch on dib-lab (preferred so others can contribute) or fork the repository and make a branch there.

Each piece or fix you are working on should have its own branch; make a pull- request to dib-lab/master to aid in code
review, testing, and feedback.

If you want your code integrated then it needs to be mergable

Example pull request update using the command line:

1. Clone the source of the pull request (if needed) git clone git@github.com:mr-c/khmer.git

2. Checkout the source branch of the pull request git checkout my-pull-request

3. Pull in the destination of the pull request and resolve any conflicts git pull
git@github.com:dib-lab/khmer.git master

4. Push your update to the source of the pull request git push

5. Jenkins will automatically attempt to build and test your pull requests.

Code coverage

Jenkins calculates code coverage for every build. Navigate to the results from the master node first to view the coverage
information.

Code coverage should never go down and new functionality needs to be tested.

Pipelines

All khmer scripts used by a published recommended analysis pipeline must be included in scripts/ and meet the
standards therein implied.

Command line scripts

Python command-line scripts should use ‘-‘ instead of ‘_’ in the name. (Only filenames containing code for import
should use _.)

Please follow the command-line conventions used under scripts/. This includes most especially standardization of ‘-x’
to be hash table size, ‘-N’ to be number of hash tables, and ‘-k’ to always refer to the k-mer size.

Command line thoughts:

If a filename is required, typically UNIX commands don’t use a flag to specify it.

Also, positional arguments typically aren’t used with multiple files.

CTB’s overall philosophy is that new files, with new names, should be created as the result of filtering
etc.; this allows easy chaining of commands. We’re thinking about how best to allow override of this, e.g.

filter-abund.py <ct file> <filename> [-o <filename.keep>]

All code in scripts/ must have automated tests; see tests/test_scripts.py. Otherwise it belongs in
sandbox/.

2.7. The khmer developer documentation 75

http://scottchacon.com/2011/08/31/github-flow.html

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

When files are overwritten, they should only be opened to be overwritten after the input files have been shown to exist.
That prevents stupid command line mistakes from trashing important files.

A general error should be signaled by exit code 1 and success by 0. Linux supports exit codes from 0 to 255 where the
value 1 means a general error. An exit code of -1 will get converted to 255.

CLI reading:

http://stackoverflow.com/questions/1183876/what-are-the-best-practices-for-implementing-a-cli-tool-in-
perl

http://catb.org/esr/writings/taoup/html/ch11s06.html

http://figshare.com/articles/tutorial_pdf/643388

Python / C integration

The Python extension that wraps the C++ core of khmer lives in khmer/_khmermodule.cc

This wrapper code is tedious and annoying so we use a static analysis tool to check for correctness.

https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html

Developers using Ubuntu Precise will want to install the gcc-4.6-plugin-dev package

Example usage:

CC="/home/mcrusoe/src/gcc-plugin-python/gcc-python-plugin/gcc-with-cpychecker
--maxtrans=512" python setup.py build_ext 2>&1 | less

False positives abound: ignore errors about the C++ standard library. This tool is primarily useful for reference count
checking, error-handling checking, and format string checking.

Errors to ignore: “Unhandled Python exception raised calling ‘execute’ method”, “AttributeError: ‘NoneType’ object
has no attribute ‘file”’

Warnings to address:

khmer/_khmermodule.cc:3109:1: note: this function is too complicated
for the reference-count checker to fully analyze: not all paths were
analyzed

Adjust –maxtrans and re-run.

khmer/_khmermodule.cc:2191:61: warning: Mismatching type in call to
Py_BuildValue with format code "i" [enabled by default]

argument 2 ("D.68937") had type
"long long unsigned int"

but was expecting
"int"

for format code "i"

See below for a format string cheat sheet One also benefits by matching C type with the function signature used later.

“I” for unsigned int “K” for unsigned long long a.k.a khmer::HashIntoType.

76 Chapter 2. Details

http://stackoverflow.com/questions/1183876/what-are-the-best-practices-for-implementing-a-cli-tool-in-perl
http://stackoverflow.com/questions/1183876/what-are-the-best-practices-for-implementing-a-cli-tool-in-perl
http://catb.org/esr/writings/taoup/html/ch11s06.html
http://figshare.com/articles/tutorial_pdf/643388
https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

2.7.11 Crazy ideas

1. A JavaScript preprocessor to do things like count k-mers (HLL), and do diginorm on data as uploaded to server.

Inspired by a paper that Titus reviewed for PLoS One; not yet published.

2.7.12 khmer/Oxli Binary File Formats

• C++ macro definitions are given in parenthesis.

• C++ types are given in square brackets.

• Len is the field’s size, in bytes, and Off is the field’s zero-based byte offset in the file/section.

khmer v1.4 and previous

CountingHash

The header is in the format below, in file offset order. There is no magic string.

Field Length Value
Version 1 0x04 (SAVED_FORMAT_VERSION)
File Type 1 0x01 (SAVED_COUNTING_HT)
Use Bigcount 1 1 if bigcounts is used, else 0
K-size 1 k-mer length, 1 <= k <= 32
Number of Tables 1 Number of Count-min Sketch tables

khmer v2.0 formats

Magic string

All formats shall have the “magic string” OXLI as their first bytes, after any external compression/encoding (e.g. gzip
encapsulation) is removed. Note that this makes them incompatible with older versions of khmer.

Countgraph

(a.k.a CountingHash, a Count-min Sketch)

The header is in the format below, again in the order of file offset.

Field Len Off Value
Magic string 4 0 OXLI (SAVED_SIGNATURE)
Version 1 4 0x04 (SAVED_FORMAT_VERSION)
File Type 1 5 0x01 (SAVED_COUNTING_HT)
Use Bigcount 1 6 0x01 if bigcounts is used, else 0x00
K-size 4 7 k-mer length, ht._ksize. [uint32_t]
Number of Tables 1 11 Number of Count-min Sketch tables, ht._n_tables. [uint8_t]
Occupied Bins 8 12 Number of occupied bins

Then follows the Countgraph’s tables. For each table:

Field Len Off Value
Table size 8 0 Length of this table, ht._tablesizes[i]. [uint64_t]
Bins N 8 This table’s bins, length given by previous field. [uint8_t]

2.7. The khmer developer documentation 77

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

Then follows a single value, the [uint64_t] number of kmer: count pairs. Then follows the Bigcount map, if
this number is greater than zero. For each kmer:

Field Len Off Value
Kmer 8 0 Kmer’s hash [HashIntoType/uint64_t].
Count 2 8 Kmer’s count [uint16_t].

Nodegraph

(a.k.a HashBits, a Bloom Filter)

The header is in the format below, again in the order of file offset. Value macro definitions are given in parenthesis

Field Len Off Value
Magic string 4 0 OXLI (SAVED_SIGNATURE)
Version 1 4 0x04 (SAVED_FORMAT_VERSION)
File Type 1 5 0x02 (SAVED_HASHBITS)
K-size 4 6 k-mer length, ht._ksize. [unsigned int]
Number of Tables 1 10 Number of Nodegraph tables. ht._n_tables. [uint8_t]
Occupied Bins 8 11 Number of occupied bins

Then follows the Nodegraph’s tables. For each table:

Field Len Off Value
Table size 8 0 Length of table, in bits (uint64_t).
Bins N/8+1 8 This table’s bytes, length given by previous field, divided by 8, plus 1 (uint8_t).

Todo
Document Tags, Stoptags, Subset, Labelset

2.8 Roadmap to v2.0, v3.0, v4.0

2.8.1 Background

To make the khmer project easier to use and easier to build upon several fundamental changes need to happen. This
document outlines our plan to do so while minimizing the impact of these changes on our existing users.

The discussion that lead to this document can be read at https://github.com/dib-lab/khmer/issues/389

2.8.2 Remainder of v1.x series

Start of transition to a single entrypoint named oxli. This will be exempt from the project’s semantic versioning and
will be advertised as experimental and unstable.

Migration of Python script functionality to a Python module named oxli. As the code moves over there will be no
change to external script functionality or their command line interfaces.

2.8.3 v2.x series

oxli command is now under semantic versioning. Scripts are still the advertised and preferred entry point for users.
Developers and workflow systems can start to trial oxli but need not switch until 3.0. New functionality is added to
both the scripts and the oxli command.

78 Chapter 2. Details

https://github.com/dib-lab/khmer/issues/389

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

2.8.4 v3.0 and project renaming

Project renamed to ‘oxli’; all references to ‘khmer’ removed from the code and documentation except for a single note
in the docs. All scripts dropped as their functionality has been moved to the oxli command. Websites that we maintain
that have ‘khmer’ in the URL will have redirects installed.

Refinement of the Python API continues, however it is not part of the semantic versioning of the project.

2.8.5 v4.0

The semantic versioning now extends to the Python API.

2.8.6 Python API wishlist

Python 3.0 support

API for multiple container types and implementation of the same.

Cleanup of Python/C++ class hierarchy to cut down on boilerplate glue code.

Switch to new-style Python objects (see LabelHash & Hashbits)

2.9 License

Copyright (c) 2010-2015, Michigan State University. Copyright (c) 2015, The Regents of the University of California

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the Michigan State University nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

There are two mailing lists dedicated to khmer, an announcements-only list and a discussion list. To search their
archives and sign-up for them, please visit the following URLs:

• Discussion: http://lists.idyll.org/listinfo/khmer

• Announcements: http://lists.idyll.org/listinfo/khmer-announce

2.9. License 79

http://lists.idyll.org/listinfo/khmer
http://lists.idyll.org/listinfo/khmer-announce

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

The archives for the khmer mailing list are available at: http://lists.idyll.org/pipermail/khmer/

khmer development was initially supported by AFRI Competitive Grant no. 2010-65205-20361 from the USDA NIFA,
and is now funded by the National Human Genome Research Institute of the National Institutes of Health under Award
Number R01HG007513 through May 2016, both to C. Titus Brown. More recently, we have received support from
the Gordon and Betty Moore Foundation under Award number GBMF4551.

80 Chapter 2. Details

http://lists.idyll.org/pipermail/khmer/
http://ged.msu.edu/downloads/2009-usda-vertex.pdf
http://ged.msu.edu/downloads/2012-bigdata-nsf.pdf

Index

Symbols
–bzip

extract-long-sequences.py command line option, 46
extract-paired-reads.py command line option, 47
extract-partitions.py command line option, 41
fastq-to-fasta.py command line option, 47
filter-abund-single.py command line option, 34
filter-abund.py command line option, 33
interleave-reads.py command line option, 48
normalize-by-median.py command line option, 45
sample-reads-randomly.py command line option, 49
split-paired-reads.py command line option, 50
trim-low-abund.py command line option, 35

–csv
readstats.py command line option, 48

–cutoff <int>, -C <int>
filter-abund-single.py command line option, 34
filter-abund.py command line option, 33
trim-low-abund.py command line option, 35

–diagnostics
unique-kmers.py command line option, 37

–error-rate <float>, -e <float>
unique-kmers.py command line option, 37

–force
trim-low-abund.py command line option, 35

–force_single
normalize-by-median.py command line option, 44
sample-reads-randomly.py command line option, 49

–fp-rate <float>
abundance-dist-single.py command line option, 32
do-partition.py command line option, 38
filter-abund-single.py command line option, 34
find-knots.py command line option, 43
load-graph.py command line option, 39
load-into-counting.py command line option, 30
make-initial-stoptags.py command line option, 42
normalize-by-median.py command line option, 44
trim-low-abund.py command line option, 35

–gzip
extract-long-sequences.py command line option, 46

extract-paired-reads.py command line option, 47
extract-partitions.py command line option, 41
fastq-to-fasta.py command line option, 47
filter-abund-single.py command line option, 34
filter-abund.py command line option, 33
interleave-reads.py command line option, 48
normalize-by-median.py command line option, 45
sample-reads-randomly.py command line option, 49
split-paired-reads.py command line option, 50
trim-low-abund.py command line option, 35

–ignore-pairs
trim-low-abund.py command line option, 35

–keep-subsets
do-partition.py command line option, 38
merge-partition.py command line option, 40

–ksize <int>, -k <int>
abundance-dist-single.py command line option, 32
annotate-partitions.py command line option, 41
do-partition.py command line option, 38
filter-abund-single.py command line option, 34
filter-stoptags.py command line option, 44
find-knots.py command line option, 43
load-graph.py command line option, 39
load-into-counting.py command line option, 30
make-initial-stoptags.py command line option, 42
merge-partition.py command line option, 40
normalize-by-median.py command line option, 44
trim-low-abund.py command line option, 35
unique-kmers.py command line option, 37

–max-size <int>, -X <int>
extract-partitions.py command line option, 41

–max-tablesize <float>, -x <float>
abundance-dist-single.py command line option, 32
do-partition.py command line option, 38
filter-abund-single.py command line option, 34
find-knots.py command line option, 43
load-graph.py command line option, 39
load-into-counting.py command line option, 30
make-initial-stoptags.py command line option, 42
normalize-by-median.py command line option, 44
trim-low-abund.py command line option, 35

81

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

–min-partition-size <int>, -m <int>
extract-partitions.py command line option, 41

–n_tables <int>, -N <int>
abundance-dist-single.py command line option, 32
do-partition.py command line option, 38
filter-abund-single.py command line option, 34
find-knots.py command line option, 43
load-graph.py command line option, 39
load-into-counting.py command line option, 30
make-initial-stoptags.py command line option, 42
normalize-by-median.py command line option, 44
trim-low-abund.py command line option, 35

–no-big-traverse
do-partition.py command line option, 38
partition-graph.py command line option, 40

–no-build-tagset, -n
load-graph.py command line option, 39

–no-output-groups, -n
extract-partitions.py command line option, 41

–normalize-to <int>, -Z <int>
filter-abund.py command line option, 33
trim-low-abund.py command line option, 35

–output-paired <filename>, -p <filename>
extract-paired-reads.py command line option, 47

–output-single <filename>, -s <filename>
extract-paired-reads.py command line option, 47

–output-unassigned, -U
extract-partitions.py command line option, 41

–report <filename>, -R <filename>
unique-kmers.py command line option, 37

–report-frequency <report_frequency>
normalize-by-median.py command line option, 45

–savegraph <filename>
abundance-dist-single.py command line option, 32
filter-abund-single.py command line option, 34

–stoptags <filename>, -S <filename>
make-initial-stoptags.py command line option, 42
partition-graph.py command line option, 39

–stream-records, -S
unique-kmers.py command line option, 37

–subset-size <float>, -s <float>
do-partition.py command line option, 38
make-initial-stoptags.py command line option, 42
partition-graph.py command line option, 40

–summary-info <format>, -s <format>
load-into-counting.py command line option, 30

–tempdir <str>, -T <str>
trim-low-abund.py command line option, 35

–threads <int>, -T <int>
abundance-dist-single.py command line option, 32
do-partition.py command line option, 38
filter-abund-single.py command line option, 34
filter-abund.py command line option, 33
load-graph.py command line option, 39

load-into-counting.py command line option, 30
partition-graph.py command line option, 40

–variable-coverage, -V
filter-abund.py command line option, 33
trim-low-abund.py command line option, 35

–version
abundance-dist-single.py command line option, 32
abundance-dist.py command line option, 31
annotate-partitions.py command line option, 41
count-median.py command line option, 36
do-partition.py command line option, 38
extract-long-sequences.py command line option, 46
extract-paired-reads.py command line option, 46
extract-partitions.py command line option, 41
fastq-to-fasta.py command line option, 47
filter-abund-single.py command line option, 34
filter-abund.py command line option, 33
filter-stoptags.py command line option, 44
find-knots.py command line option, 43
interleave-reads.py command line option, 48
load-graph.py command line option, 39
load-into-counting.py command line option, 30
make-initial-stoptags.py command line option, 42
merge-partition.py command line option, 40
normalize-by-median.py command line option, 44
partition-graph.py command line option, 40
readstats.py command line option, 48
sample-reads-randomly.py command line option, 49
split-paired-reads.py command line option, 50
trim-low-abund.py command line option, 35
unique-kmers.py command line option, 37

-0 <output_orphaned>, –output-orphaned <out-
put_orphaned>

split-paired-reads.py command line option, 50
-1 <output_first>, –output-first <output_first>

split-paired-reads.py command line option, 50
-2 <output_second>, –output-second <output_second>

split-paired-reads.py command line option, 50
-C <int>, –cutoff <int>

normalize-by-median.py command line option, 44
-M <float>, –max-memory-usage <float>

abundance-dist-single.py command line option, 32
do-partition.py command line option, 38
filter-abund-single.py command line option, 34
find-knots.py command line option, 43
load-graph.py command line option, 39
load-into-counting.py command line option, 30
make-initial-stoptags.py command line option, 42
normalize-by-median.py command line option, 44
trim-low-abund.py command line option, 35

-M <int>, –max_reads <int>
sample-reads-randomly.py command line option, 49

-N <int>, –num_reads <int>
sample-reads-randomly.py command line option, 49

82 Index

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

-R <int>, –random-seed <int>
sample-reads-randomly.py command line option, 49

-R <report_filename>, –report <report_filename>
normalize-by-median.py command line option, 45

-S <int>, –samples <int>
sample-reads-randomly.py command line option, 49

-U <float>, –unique-kmers <float>
abundance-dist-single.py command line option, 32
do-partition.py command line option, 38
filter-abund-single.py command line option, 34
find-knots.py command line option, 43
load-graph.py command line option, 39
load-into-counting.py command line option, 30
make-initial-stoptags.py command line option, 42
normalize-by-median.py command line option, 44
trim-low-abund.py command line option, 35

-b, –no-bigcount
abundance-dist-single.py command line option, 32
abundance-dist.py command line option, 31
load-into-counting.py command line option, 30

-d <output_directory>, –output-dir <output_directory>
split-paired-reads.py command line option, 50

-d, –output-dir
extract-paired-reads.py command line option, 46

-f, –force
abundance-dist-single.py command line option, 32
abundance-dist.py command line option, 31
annotate-partitions.py command line option, 41
count-median.py command line option, 36
do-partition.py command line option, 38
extract-paired-reads.py command line option, 47
extract-partitions.py command line option, 41
filter-abund-single.py command line option, 34
filter-abund.py command line option, 33
filter-stoptags.py command line option, 44
find-knots.py command line option, 43
interleave-reads.py command line option, 48
load-graph.py command line option, 39
load-into-counting.py command line option, 30
make-initial-stoptags.py command line option, 42
merge-partition.py command line option, 40
normalize-by-median.py command line option, 45
partition-graph.py command line option, 40
sample-reads-randomly.py command line option, 49
split-paired-reads.py command line option, 50

-h, –help
abundance-dist-single.py command line option, 32
abundance-dist.py command line option, 31
annotate-partitions.py command line option, 40
count-median.py command line option, 36
do-partition.py command line option, 38
extract-long-sequences.py command line option, 46
extract-paired-reads.py command line option, 46
extract-partitions.py command line option, 41

fastq-to-fasta.py command line option, 47
filter-abund-single.py command line option, 34
filter-abund.py command line option, 33
filter-stoptags.py command line option, 44
find-knots.py command line option, 43
interleave-reads.py command line option, 48
load-graph.py command line option, 39
load-into-counting.py command line option, 30
make-initial-stoptags.py command line option, 42
merge-partition.py command line option, 40
normalize-by-median.py command line option, 44
partition-graph.py command line option, 39
readstats.py command line option, 48
sample-reads-randomly.py command line option, 49
split-paired-reads.py command line option, 49
trim-low-abund.py command line option, 35
unique-kmers.py command line option, 36

-l <filename>, –loadgraph <filename>
normalize-by-median.py command line option, 45
trim-low-abund.py command line option, 35

-l <int>, –length <int>
extract-long-sequences.py command line option, 46

-n, –n_keep
fastq-to-fasta.py command line option, 47

-o <filename>, –output <filename>
fastq-to-fasta.py command line option, 47
interleave-reads.py command line option, 48
normalize-by-median.py command line option, 45
readstats.py command line option, 48
sample-reads-randomly.py command line option, 49

-o <optional_output_filename>, –output <op-
tional_output_filename>

filter-abund.py command line option, 33
-o <output_filename>, –output <output_filename>

trim-low-abund.py command line option, 35
-o <output>, –output <output>

extract-long-sequences.py command line option, 46
-p, –paired

normalize-by-median.py command line option, 44
-q, –quiet

normalize-by-median.py command line option, 44
unique-kmers.py command line option, 37

-s <filename>, –savegraph <filename>
normalize-by-median.py command line option, 45
trim-low-abund.py command line option, 35

-s, –squash
abundance-dist-single.py command line option, 32
abundance-dist.py command line option, 31

-u <unpaired_reads_filename>, –unpaired-reads <un-
paired_reads_filename>

normalize-by-median.py command line option, 45
-z, –no-zero

abundance-dist-single.py command line option, 32
abundance-dist.py command line option, 31

Index 83

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

A
abundance-dist-single.py command line option

–fp-rate <float>, 32
–ksize <int>, -k <int>, 32
–max-tablesize <float>, -x <float>, 32
–n_tables <int>, -N <int>, 32
–savegraph <filename>, 32
–threads <int>, -T <int>, 32
–version, 32
-M <float>, –max-memory-usage <float>, 32
-U <float>, –unique-kmers <float>, 32
-b, –no-bigcount, 32
-f, –force, 32
-h, –help, 32
-s, –squash, 32
-z, –no-zero, 32
input_sequence_filename, 32
output_histogram_filename, 32

abundance-dist.py command line option
–version, 31
-b, –no-bigcount, 31
-f, –force, 31
-h, –help, 31
-s, –squash, 31
-z, –no-zero, 31
input_count_graph_filename, 31
input_sequence_filename, 31
output_histogram_filename, 31

annotate-partitions.py command line option
–ksize <int>, -k <int>, 41
–version, 41
-f, –force, 41
-h, –help, 40
graphbase, 40
input_sequence_filename, 40

B
basename

partition-graph.py command line option, 39

C
count-median.py command line option

–version, 36
-f, –force, 36
-h, –help, 36
input_count_graph_filename, 36
input_sequence_filename, 36
output_summary_filename, 36

D
do-partition.py command line option

–fp-rate <float>, 38
–keep-subsets, 38

–ksize <int>, -k <int>, 38
–max-tablesize <float>, -x <float>, 38
–n_tables <int>, -N <int>, 38
–no-big-traverse, 38
–subset-size <float>, -s <float>, 38
–threads <int>, -T <int>, 38
–version, 38
-M <float>, –max-memory-usage <float>, 38
-U <float>, –unique-kmers <float>, 38
-f, –force, 38
-h, –help, 38
graphbase, 38
input_sequence_filename, 38

E
extract-long-sequences.py command line option

–bzip, 46
–gzip, 46
–version, 46
-h, –help, 46
-l <int>, –length <int>, 46
-o <output>, –output <output>, 46
input_filenames, 46

extract-paired-reads.py command line option
–bzip, 47
–gzip, 47
–output-paired <filename>, -p <filename>, 47
–output-single <filename>, -s <filename>, 47
–version, 46
-d, –output-dir, 46
-f, –force, 47
-h, –help, 46
infile, 46

extract-partitions.py command line option
–bzip, 41
–gzip, 41
–max-size <int>, -X <int>, 41
–min-partition-size <int>, -m <int>, 41
–no-output-groups, -n, 41
–output-unassigned, -U, 41
–version, 41
-f, –force, 41
-h, –help, 41
input_partition_filename, 41
output_filename_prefix, 41

F
fastq-to-fasta.py command line option

–bzip, 47
–gzip, 47
–version, 47
-h, –help, 47
-n, –n_keep, 47
-o <filename>, –output <filename>, 47

84 Index

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

input_sequence, 47
filenames

readstats.py command line option, 48
sample-reads-randomly.py command line option, 49

filter-abund-single.py command line option
–bzip, 34
–cutoff <int>, -C <int>, 34
–fp-rate <float>, 34
–gzip, 34
–ksize <int>, -k <int>, 34
–max-tablesize <float>, -x <float>, 34
–n_tables <int>, -N <int>, 34
–savegraph <filename>, 34
–threads <int>, -T <int>, 34
–version, 34
-M <float>, –max-memory-usage <float>, 34
-U <float>, –unique-kmers <float>, 34
-f, –force, 34
-h, –help, 34
input_sequence_filename, 33

filter-abund.py command line option
–bzip, 33
–cutoff <int>, -C <int>, 33
–gzip, 33
–normalize-to <int>, -Z <int>, 33
–threads <int>, -T <int>, 33
–variable-coverage, -V, 33
–version, 33
-f, –force, 33
-h, –help, 33
-o <optional_output_filename>, –output <op-

tional_output_filename>, 33
input_count_graph_filename, 33
input_sequence_filename, 33

filter-stoptags.py command line option
–ksize <int>, -k <int>, 44
–version, 44
-f, –force, 44
-h, –help, 44
input_sequence_filename, 43
input_stoptags_filename, 43

find-knots.py command line option
–fp-rate <float>, 43
–ksize <int>, -k <int>, 43
–max-tablesize <float>, -x <float>, 43
–n_tables <int>, -N <int>, 43
–version, 43
-M <float>, –max-memory-usage <float>, 43
-U <float>, –unique-kmers <float>, 43
-f, –force, 43
-h, –help, 43
graphbase, 43

G
graphbase

annotate-partitions.py command line option, 40
do-partition.py command line option, 38
find-knots.py command line option, 43
make-initial-stoptags.py command line option, 42
merge-partition.py command line option, 40

I
infile

extract-paired-reads.py command line option, 46
split-paired-reads.py command line option, 49

input_count_graph_filename
abundance-dist.py command line option, 31
count-median.py command line option, 36
filter-abund.py command line option, 33

input_filenames
extract-long-sequences.py command line option, 46
trim-low-abund.py command line option, 35

input_partition_filename
extract-partitions.py command line option, 41

input_sequence
fastq-to-fasta.py command line option, 47

input_sequence_filename
abundance-dist-single.py command line option, 32
abundance-dist.py command line option, 31
annotate-partitions.py command line option, 40
count-median.py command line option, 36
do-partition.py command line option, 38
filter-abund-single.py command line option, 33
filter-abund.py command line option, 33
filter-stoptags.py command line option, 43
load-graph.py command line option, 39
load-into-counting.py command line option, 30
normalize-by-median.py command line option, 44
unique-kmers.py command line option, 36

input_stoptags_filename
filter-stoptags.py command line option, 43

interleave-reads.py command line option
–bzip, 48
–gzip, 48
–version, 48
-f, –force, 48
-h, –help, 48
-o <filename>, –output <filename>, 48
left, 48
right, 48

L
left

interleave-reads.py command line option, 48
load-graph.py command line option

–fp-rate <float>, 39

Index 85

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

–ksize <int>, -k <int>, 39
–max-tablesize <float>, -x <float>, 39
–n_tables <int>, -N <int>, 39
–no-build-tagset, -n, 39
–threads <int>, -T <int>, 39
–version, 39
-M <float>, –max-memory-usage <float>, 39
-U <float>, –unique-kmers <float>, 39
-f, –force, 39
-h, –help, 39
input_sequence_filename, 39
output_nodegraph_filename, 39

load-into-counting.py command line option
–fp-rate <float>, 30
–ksize <int>, -k <int>, 30
–max-tablesize <float>, -x <float>, 30
–n_tables <int>, -N <int>, 30
–summary-info <format>, -s <format>, 30
–threads <int>, -T <int>, 30
–version, 30
-M <float>, –max-memory-usage <float>, 30
-U <float>, –unique-kmers <float>, 30
-b, –no-bigcount, 30
-f, –force, 30
-h, –help, 30
input_sequence_filename, 30
output_countgraph_filename, 30

M
make-initial-stoptags.py command line option

–fp-rate <float>, 42
–ksize <int>, -k <int>, 42
–max-tablesize <float>, -x <float>, 42
–n_tables <int>, -N <int>, 42
–stoptags <filename>, -S <filename>, 42
–subset-size <float>, -s <float>, 42
–version, 42
-M <float>, –max-memory-usage <float>, 42
-U <float>, –unique-kmers <float>, 42
-f, –force, 42
-h, –help, 42
graphbase, 42

merge-partition.py command line option
–keep-subsets, 40
–ksize <int>, -k <int>, 40
–version, 40
-f, –force, 40
-h, –help, 40
graphbase, 40

N
normalize-by-median.py command line option

–bzip, 45
–force_single, 44

–fp-rate <float>, 44
–gzip, 45
–ksize <int>, -k <int>, 44
–max-tablesize <float>, -x <float>, 44
–n_tables <int>, -N <int>, 44
–report-frequency <report_frequency>, 45
–version, 44
-C <int>, –cutoff <int>, 44
-M <float>, –max-memory-usage <float>, 44
-R <report_filename>, –report <report_filename>,

45
-U <float>, –unique-kmers <float>, 44
-f, –force, 45
-h, –help, 44
-l <filename>, –loadgraph <filename>, 45
-o <filename>, –output <filename>, 45
-p, –paired, 44
-q, –quiet, 44
-s <filename>, –savegraph <filename>, 45
-u <unpaired_reads_filename>, –unpaired-reads

<unpaired_reads_filename>, 45
input_sequence_filename, 44

O
output_countgraph_filename

load-into-counting.py command line option, 30
output_filename_prefix

extract-partitions.py command line option, 41
output_histogram_filename

abundance-dist-single.py command line option, 32
abundance-dist.py command line option, 31

output_nodegraph_filename
load-graph.py command line option, 39

output_summary_filename
count-median.py command line option, 36

P
partition-graph.py command line option

–no-big-traverse, 40
–stoptags <filename>, -S <filename>, 39
–subset-size <float>, -s <float>, 40
–threads <int>, -T <int>, 40
–version, 40
-f, –force, 40
-h, –help, 39
basename, 39

R
readstats.py command line option

–csv, 48
–version, 48
-h, –help, 48
-o <filename>, –output <filename>, 48
filenames, 48

86 Index

khmer Documentation, Release 2.0-rc6+0.g4c75965.dirty

right
interleave-reads.py command line option, 48

S
sample-reads-randomly.py command line option

–bzip, 49
–force_single, 49
–gzip, 49
–version, 49
-M <int>, –max_reads <int>, 49
-N <int>, –num_reads <int>, 49
-R <int>, –random-seed <int>, 49
-S <int>, –samples <int>, 49
-f, –force, 49
-h, –help, 49
-o <filename>, –output <filename>, 49
filenames, 49

split-paired-reads.py command line option
–bzip, 50
–gzip, 50
–version, 50
-0 <output_orphaned>, –output-orphaned <out-

put_orphaned>, 50
-1 <output_first>, –output-first <output_first>, 50
-2 <output_second>, –output-second <out-

put_second>, 50
-d <output_directory>, –output-dir <out-

put_directory>, 50
-f, –force, 50
-h, –help, 49
infile, 49

T
trim-low-abund.py command line option

–bzip, 35
–cutoff <int>, -C <int>, 35
–force, 35
–fp-rate <float>, 35
–gzip, 35
–ignore-pairs, 35
–ksize <int>, -k <int>, 35
–max-tablesize <float>, -x <float>, 35
–n_tables <int>, -N <int>, 35
–normalize-to <int>, -Z <int>, 35
–tempdir <str>, -T <str>, 35
–variable-coverage, -V, 35
–version, 35
-M <float>, –max-memory-usage <float>, 35
-U <float>, –unique-kmers <float>, 35
-h, –help, 35
-l <filename>, –loadgraph <filename>, 35
-o <output_filename>, –output <output_filename>,

35
-s <filename>, –savegraph <filename>, 35

input_filenames, 35

U
unique-kmers.py command line option

–diagnostics, 37
–error-rate <float>, -e <float>, 37
–ksize <int>, -k <int>, 37
–report <filename>, -R <filename>, 37
–stream-records, -S, 37
–version, 37
-h, –help, 36
-q, –quiet, 37
input_sequence_filename, 36

Index 87

	What is khmer?
	Details
	Introduction to khmer
	Contributors and Acknowledgements
	Citations
	What's New In khmer 2.0?
	Release notes
	The khmer user documentation
	The khmer developer documentation
	Roadmap to v2.0, v3.0, v4.0
	License

